
University of London

Imperial College of Science, Technology and Medicine

Department of Computing

Cooperatively combining program
verifiers: foundations and tool support

Nathaniel Charlton

Submitted in part fulfilment of the requirements for the degree of
Doctor of Philosophy in Computing of the University of London and

the Diploma of Imperial College, August 2008

1

Declaration

I declare that the work presented in this thesis is my own, conducted under the su-

pervision and guidance of Dr. Michael Huth, and that no part it has been submitted

for any other academic award.

2

Abstract

Computer science literature abounds with descriptions of program verifiers, sys-

tems which analyse a software program and attempt to prove automatically that

the program satisfies behavioural specifications. Techniques used include predicate

abstraction, three-valued heaps graphs and classes of polyhedra. Yet while these sys-

tems have had some encouraging successes, each deals only with particular patterns

of program behaviour: e.g. predicate abstraction can infer arithmetical relationships

but does not capture the “shape” of linked data structures; for three-valued shape

graphs the reverse is true. Thus typical programs, in which different patterns of

behaviour are mixed up together, still cannot be verified automatically.

This thesis explores the question: “By combining several program verifiers, and

making them cooperate, can we produce a verification system that solves a broader

range of verification problems than its components do?”. Specifically, our approach

is to allow the verifiers to exchange information about program states, expressed as

formulae of a single common logic, so that each can benefit from the others’ findings.

We design a mechanism which enables the verifiers to cooperate. Our setup com-

prises several verifiers, cleanly separated as analysis modules implementing a com-

mon interface, and a central “broker” which oversees the verification process, prop-

agating formulae between the analysis modules. We formalise this approach for

programs of a core imperative heap-manipulating language with recursion, anno-

tated with correctness assertions. We give an interprocedural verification algorithm

for the broker and soundness conditions for analysis modules, and prove that these

ensure the algorithm is sound (though perforce incomplete).

We report on the implementation of our new method in an experimental system

hector, which includes the broker and analysis modules for a range of techniques,

including predicate abstraction and three-valued shape analysis. By means of a

verification case study, we demonstrate some of the advantages of our approach.

3

Acknowledgements

I would first of all like to thank my supervisor Michael Huth, whose unfaltering op-

timism and encouragement enabled me to keep working even when I felt thoroughly

disconsolate. I wish I had been better able to listen to his good advice.

I thank everyone with whom I have discussed aspects of this research, particularly

Ian Hodkinson and Philippa Gardner, and the members of her research group. I

would also like to thank Joe Stoy, my former tutor, whose excellent teaching gave

my computer science education such a good start.

I wish to express my personal gratitude to all of my friends for their kindness and

support. Warm thanks are due in particular to my partner Oi Tak. I am extremely

fortunate to have met my office-mates Jaspreet, Jayshan, Alex and Simon, with

whom I have shared the extraordinary PhD experience.

Finally, I am eternally grateful to my parents, to whom I owe so much, for allowing

me the freedom to set my own goals in life, and always supporting me in the pursuit

of them.

4

Dedicated to the memory of Tupac. Rest in peace.

5

The tropical sunshine lay like warm honey on the naked bodies of children tumbling
promiscuously among the hibiscus blossoms. Home was in any one of twenty palm-
thatched houses. In the Trobriands conception was the work of ancestral ghosts;
nobody had ever heard of a father.

Aldous Huxley, Brave New World

6

Contents

Abstract 3

Acknowledgements 4

1 Introduction 16

1.1 Setting the scene . 16

1.1.1 Verification of finite-state systems 17

1.1.2 Verification of infinite-state software 17

1.1.3 The choice of abstraction domain 19

1.2 Our idea: clean cooperation between domains 21

1.2.1 The overall design of our system 21

1.2.2 Motivation: conjectured advantages of our system 22

1.3 Specific objectives of this thesis . 24

1.4 Contents of this thesis . 27

1.4.1 Publications . 29

2 Background 31

2.1 The verification problem . 32

2.1.1 Programs as control flow graphs 32

2.1.2 Correctness properties and reachability 34

2.2 Decidability issues for verification . 37

2.2.1 Finite state programs . 37

2.2.2 Beyond finite state: hello, undecidability 37

7

CONTENTS 8

2.3 Verification using inductive properties 38

2.3.1 Induction with sets of states 39

2.3.2 General formulation of abstract induction-based verification . 40

2.3.3 Examples of abstract induction-based verification 44

2.4 Obtaining inductive properties . 49

2.4.1 Where do inductive properties come from? 49

2.4.2 Forward propagation . 50

2.4.3 Finite and finite-height domains ensure termination 52

2.5 Survey of well-known abstraction domains 53

2.5.1 Predicate abstraction . 54

2.5.2 Classical program analyses . 60

2.5.3 Linked data structures and shape 61

2.5.4 Numerical domains . 69

2.6 Abstraction domains are not independent 70

2.6.1 An example of non-independence 71

2.6.2 Reduced product: a non-algorithmic description of domain
combination . 72

2.6.3 Direct implementation of combined domains 75

2.6.4 Modular combination: the open product operator 76

2.6.5 Comparison: open product vs. reduced product 77

2.7 Summary . 78

3 Our approach: basic concepts and algorithms 80

3.1 The target programming language . 81

3.1.1 Syntax of programs . 82

3.1.2 Program states . 87

3.1.3 Semantics of programs . 88

3.2 Our logic for program states . 96

3.2.1 The need for time indices . 96

CONTENTS 9

3.2.2 Syntax and semantics of our logic L 98

3.3 Abstract models of programs . 102

3.3.1 Syntactic definition . 102

3.3.2 Sound abstract models . 105

3.3.3 Using sound models to verify programs 109

3.4 Analysis modules . 110

3.4.1 Our interface for analysis modules 111

3.4.2 An example analysis module: multi-variable sign analysis . . . 114

3.4.3 Soundness conditions for analysis modules 119

3.5 Our module-based algorithm extract-model 122

3.6 Combining analysis modules . 135

3.6.1 The module combinator � . 135

3.6.2 Example of combination: obtaining a “thorough” sign analysis 136

3.7 Discussion of our choice of common logic L 144

3.8 Summary . 146

4 Implementation: the hector system 148

4.1 Overview of implementation . 148

4.2 Implementation of module-based framework 150

4.3 Implementation of sign analysis module (compsigns) 154

4.4 Implementation of predicate abstraction modules (tpa and mpa) . . 155

4.4.1 Connecting formulae . 155

4.4.2 Formulating predicate abstraction as a module 157

4.4.3 Interfacing with the theorem prover 161

4.5 Implementation of shape analysis module (tvla) 162

4.5.1 Basic implementation and choice of core predicates 162

4.5.2 Cases where shape analysis “gives up” 165

4.5.3 Treatment of procedure calls and returns 166

4.5.4 Using shared formulae: translation followed by coercion 167

CONTENTS 10

4.5.5 Providing shared formulae . 171

4.6 Implementation of a simple type system module (types) 173

4.6.1 A simple type system for heap references 173

4.6.2 Turning our type system into an analysis module 174

4.6.3 Additional types and type inference 176

4.7 Implementation of two further shallow domains 177

4.7.1 Symbolic constant propagation (symbprop) 177

4.7.2 Tracking of heap references (refs) 178

4.8 Optimisations . 178

4.9 Visualisation features and web interface 179

4.9.1 Drawing features . 180

4.9.2 Model checking features . 183

4.10 Summary . 185

5 Case study 187

5.1 The MineSweeper game . 187

5.2 Our implementation of MineSweeper 188

5.2.1 The Model-View pattern . 189

5.2.2 Structure of implementation 189

5.2.3 Properties we verify . 192

5.3 Verification using all analysis modules 194

5.4 Comparison: verification using two modules only 198

5.5 Some interesting uses of propagation 200

5.6 Real counterexample for a false property 208

5.7 Summary of case study . 209

6 Additional model checking features 210

6.1 LTL model checking . 211

6.1.1 Our temporal logic . 211

CONTENTS 11

6.1.2 Evaluating arbitrary L -formulae in arbitrary abstract states . 215

6.1.3 Is our temporal logic checking procedure sound? 216

6.1.4 Sources of loss of precision . 217

6.2 Falsifying safety properties . 217

6.2.1 H: a judgement for falsification 219

6.2.2 Example of falsification . 223

6.2.3 Remarks . 225

6.3 Post-pruning models . 226

6.3.1 Paths which “fizzle out” . 226

6.3.2 The post-pruning algorithm 229

6.4 Summary . 231

7 Conclusions 232

7.1 Contributions of this thesis . 232

7.1.1 Revisiting our design objectives 232

7.1.2 Revisiting our implementation objectives 236

7.1.3 Revisiting our experimental objectives 240

7.1.4 Revisiting the proposed benefits of our approach 242

7.2 Comparison with other approaches to domain combination 244

7.2.1 Comparison with Nelson-Oppen style systems 245

7.2.2 Comparison with the Hob system 248

7.2.3 Comparison with the Jahob system 249

7.2.4 Comparison with the ASTRÉE system 250

7.3 Future directions . 252

7.3.1 Practical issue: processing source code 253

7.3.2 Practical and theoretical issue: adding CEGAR facilities . . . 255

7.3.3 Theoretical issue: generalising interpolation 257

7.4 Closing remarks . 258

A Appendix 260

A.1 Three-valued logic . 260

A.1.1 Compositional semantics vs. thorough semantics 261

A.2 Tables for sign analysis . 263

A.3 Full soundness conditions for analysis modules 265

Bibliography 270

12

List of Figures

1.1 Overall structure of our approach and prototype verifier 21

2.1 Example procedure for calculating integer square root, as source code

and as control flow graph (CFG) . 32

2.2 Procedure from Fig 2.1 annotated with a precondition, a postcondi-

tion and an assertion, and these annotations reflected in an instru-

mented CFG . 35

2.3 Instrumented CFG from Fig 2.2 with an inductive set of states 41

2.4 CFG from Fig 2.2, with assignments of abstract values, using first-

order formulae and intervals . 46

2.5 Iterative worklist algorithm for forward propagation 50

2.6 Part of the CFG from Fig 2.2 shown at three stages of the forward

propagation algorithm using interval analysis 52

2.7 Some sound but incomplete first order axioms for transitive closure . 63

2.8 An example of a graph type declaration for the PALE tool 65

2.9 A concrete heap in TVLA . 66

2.10 An abstract heap in TVLA . 66

2.11 Sign and parity abstraction lattices 71

2.12 Cartoon reminding us that reduced product is really a non-algorithmic

description of ideal domain combination, not an effective way of real-

ising it. 74

2.13 Direct implementation of the abstract transfer function for x:=x-1 in

the product domain Sgn⊗Par. 75

13

LIST OF FIGURES 14

3.1 CFGs for our running example program. 86

3.2 Derivation rules for intraprocedural execution. Part 1 of 3. 92

3.3 Derivation rules for intraprocedural execution. Part 2 of 3. 93

3.4 Derivation rules for intraprocedural execution. Part 3 of 3. 94

3.5 Derivation rules for procedure calls and returns. 95

3.6 The roles of the time indices 0, 1 and C for intraprocedural statements. 97

3.7 Grammar of the logic L which describes program states. 99

3.8 Interpretation of terms in our logic L 99

3.9 Semantics of our logic L . 100

3.10 An example of an abstract model, built from a sign analysis. 104

3.11 Another model, more precise than Figure 3.10, built with combined

domain compsigns 〈∆〉�cons 〈ρ〉 which effects a thorough sign analysis.138

4.1 The overall structure of the hector verification system. 151

4.2 An example target program in the form read in by hector. 153

4.3 An example configuration of the analysis, in the form read in by

hector. 154

4.4 The roles of the time indices 0, 1 and C for procedure calls. 157

4.5 The roles of the time indices 0, 1, 2, 3 and C for procedure returns. . . 158

4.6 Our translation Φ 7→ Φ† from L to TVLA’s internal logic. 168

4.7 By exploiting our translation to TVLA’s internal logic, we perform

the reverse, i.e. extract information from TVLA back into L 171

4.8 Web browser interface through which models are accessed. 180

4.9 Part of the web interface where options for drawing models are selected.181

4.10 Control flow graphs of our square root program, as automatically

drawn by hector. 181

4.11 Outline view of a model, as automatically drawn by hector. 182

4.12 Full view of the procedure chooseNat, as automatically drawn by

hector. 182

4.13 Part of the web interface where model checking options are selected. . 183

4.14 hector’s drawing of an abstract counterexample trace. 184

5.1 The MineSweeper puzzle game, an implementation of which we verify. 188

5.2 Procedure call graph for our case study program. 190

5.3 The abstract-check-refine loop. 194

5.4 An abstract state from our verification, with a component for each of

the six analysis modules. 195

5.5 Summary of the verification using all six analysis modules. 196

5.6 Summary of the verification using only two analysis modules. 197

5.7 An abstract state encountered during our scenario (1 of 8). 201

5.8 An abstract state encountered during our scenario (2 of 8). 202

5.9 An abstract state encountered during our scenario (3 of 8). 202

5.10 An abstract state encountered during our scenario (4 of 8). 203

5.11 An abstract state encountered during our scenario (5 of 8). 204

5.12 An abstract state encountered during our scenario (6 of 8). 206

5.13 Abstract states encountered during our scenario (7 and 8 of 8). 207

6.1 An automaton generated from a temporal logic formula. 213

6.2 An execution trace found by our temporal logic query. 214

6.3 An example falsification of a faulty program. 224

6.4 Outline view of a falsification of a faulty program. 225

6.5 Outline view of list add showing three paths which fizzle out. 227

6.6 An execution path which fizzles out. 228

A.1 Three-valued compositional semantics for logical connectives. 261

15

Chapter 1

Introduction

1.1 Setting the scene

Over the last few decades, more and more tasks occurring in our daily lives have been

turned over to computer software. The size and complexity of programs is increasing

all the time, in line with advances in hardware and programming paradigms. Yet

the problem of software reliability remains: software continues to be faulty, and

because of greater dependence on software, these faults are costlier than ever. The

failure of safety-critical control systems may cost human lives, and businesses stand

to lose huge amounts of money if products are defective. Thus, there is an urgent

need to address the reliability problem.

The idea of automatic software verification is to turn the task of ensuring software

correctness over to software, just as we have done with so many other tasks. We

would like to build a system which takes as input a program, plus a formal descrip-

tion of how that program should behave, and produces as output either confirmation

that the program has the desired behaviour, or an explanation of why it does not

(such as an execution trace showing the undesired behaviour).

Conventional testing, while having an important role in the development process,

16

1.1. Setting the scene 17

does not answer the verification problem because, as Dijkstra famously remarked,

“program testing can be used to show the presence of bugs, but never to show their

absence” [Dij70]. Put another way, testing does not give strong enough assurances

of correctness. Something else is required.

1.1.1 Verification of finite-state systems

For systems which are finite state, such as many control systems and communication

protocols, the model checking technique [CE82, QS82] is widely used to verify tem-

poral properties such as deadlock-freedom. In model checking, the system’s state

space is explored exhaustively, resulting in a full verification: if the system satisfies

the property then this is reported, and if it does not, a counterexample execution is

given. In other words, model checking is a decision procedure for finite state verifica-

tion problems. Efficient model checking algorithms based on BDDs (binary decision

diagrams) can now handle systems with upwards of 1020 states [BCM+92], and the

technology has established itself in industry e.g. [GL00, RL02]. The model checking

process does not require any human intervention, and most model checkers allow a

wide range of behavioural properties to be checked.

1.1.2 Verification of infinite-state software

Most applications programs, however, are infinite state. “Real” programming lan-

guages such as Java contain numerous constructs which may give rise to an infinite

state space: for example, a true integer type, arbitrary-depth recursion, arbitrary-

length arrays, and heap allocation which allows for instance arbitrary-length linked

lists.

Unfortunately1, the situation for such infinite state systems is not as rosy. The

1Strictly speaking, I am unsure how much sense it makes to describe as “unfortunate” a situation
which seems to be logically entirely inevitable; philosophy isn’t our aim here, however.

1.1. Setting the scene 18

exhaustive state checks used in finite state model checking are in general no longer

possible. In fact, as we review in the next chapter, any suitably general verification

problem for infinite state software is undecidable. This means that we cannot design

a “perfect” program verifier which, running fully automatically and for any input

program, will always terminate, never says “don’t know” and is always accurate

about whether the program satisfies its specification.

Nevertheless, the software reliability problem does not go away simply because of

a formal result; we cannot just throw up our hands and go home. So some of the

attributes of the “perfect” verifier (full automation, full range of input programs,

guaranteed termination, guaranteed definite result, and guaranteed accuracy) must

be sacrificed. On the other hand, what gives us hope is that the range of programs

that programmers would ever actually write is a tiny fraction of the theoretical

range, consisting of the same basic idioms applied over and over. In particular, the

programs used in practice generate states which are in some sense orderly, regular

and full of patterns.

In approaches to verifying such software, the infiniteness of the state space is over-

come by the process of abstraction: we define some symbolic way to represent not

states, but entire sets of states (possibly infinite). Operations on these sets, such

as computing successors under a program instruction, or testing their emptiness,

are performed by symbolic reasoning algorithms. This basic method surfaces in

different guises, such as abstract model checking [CGL92], abstract interpretation

[CC77, CC92a] and Hoare logic proofs [Hoa69]. Using these symbolic representations

one then builds, manually or automatically, a finite representation of the program,

sometimes called an abstract model, which can be checked for possible errors.

Of course, the original program and the abstract model must satisfy an appropriate

relation to ensure that the results obtained from checking the abstract model will

“carry over” to the original program. For example, we may construct the abstract

model to be a simulation of the original program (e.g. [BG03]), which means that

1.1. Setting the scene 19

all execution paths in the program are possible in the abstract model (and possibly

more). This ensures that safety properties which hold in the abstract model also hold

in the program. Alternatively, we may think of this process in terms of computing

an inductive invariant for the program.

Checking software in this way has achieved some success: for example, communica-

tion protocols, garbage collectors and libraries implementing data structures have

been verified in this manner (e.g. [HS96, DDP99, MS01] respectively). However, as

we shall see shortly, current techniques have significant limitations.

1.1.3 The choice of abstraction domain

A crucial question when applying abstraction is: what class of symbolic represen-

tations should we use? Or, put another way, what should be our abstract domain?

Some well-known representations, or abstract domains, are:

intervals: for each program variable x an interval is computed, i.e. a constraint

a ≤ x ≤ b where a ∈ {−∞} ∪ Z and b ∈ {+∞} ∪ Z (as in [CC76, SW04])

polyhedra: the possible values of numerical variables are represented by a convex

polyhedron (e.g. [CH78, CC04])

three-valued shape graphs: the contents of the heap is represented imprecisely

but safely by a three-valued heap [SRW99, LAMS04] (e.g. Figure 2.10)

graph types: the layout of the heap is represented by a graph type declaration

[MS01] (e.g. Figure 2.8)

monomials: in monomial predicate abstraction [GS97, BPR01] the concrete pro-

gram states are grouped into equivalence classes based on the values they give

to a finite collection of first order predicates

1.1. Setting the scene 20

buffer domains: these provide a specialised representation to track the use of

string buffers in C [SK02]

The choice of abstraction domain affects most characteristics of the verification

system, such as how much time it takes to run, whether it is fully automatic or

needs to be guided by user annotations, how precise the analysis is and, perhaps

most importantly, which subclasses of programs and properties can be verified. For

example:

� Interval analysis is fast and simple and fully automatic, and each constraint

needs little space; the information generated is very limited, but may be suf-

ficient if we need only check against out-of-bounds array accesses or integer

overflows.

� Polyhedral analysis discovers slightly more information, in that it can find

relationships between variables, but has a greater computational cost.

� Predicate abstraction can find much more general relationships between vari-

ables, and has been used to successfully verify interface usage properties of

device drivers [BBC+06]. However, the approach is harder to use without user

guidance (because the abstraction predicates must somehow be chosen), may

have even higher computational cost (because successor computations require

invocation of a theorem prover), and does not handle heap-manipulating pro-

grams well (because first order predicates cannot express many important heap

properties).

� Conversely, graph types and three-valued shape graphs do handle heap prop-

erties well, but cannot track arithmetical relationships (at least not without

ad-hoc contortions). Graph types give a very precise analysis of the heap, but

are only applicable to a subset of data structures; three-valued shape graphs

apply to any heap, but sometimes give the answer “don’t know”.

1.2. Our idea: clean cooperation between domains 21

Figure 1.1: The overall structure of our approach and prototype verifier

Another domain one could add into the above list is:

full predicate logic: any formula of an appropriate predicate logic can be used to

describe a set of states (as in [Hoa69] and [Dij75])

although systems built using full predicate logic (e.g. [SI99, IEI04]) are of a somewhat

different character to those built using more restricted domains.

1.2 Our idea: clean cooperation between domains

1.2.1 The overall design of our system

In this work we propose a system in which the various abstraction domains can be

used cooperatively to analyse the target program.

Our setup, as shown in Figure 1.1, consists of several analysis modules, one per

1.2. Our idea: clean cooperation between domains 22

abstraction domain, and a central “broker” which overseas the verification. The

abstraction domains we wish to use are wrapped inside analysis modules, which im-

plement a common interface. This separation is clean in the sense that the symbolic

representations used for a domain never escape outside its analysis module, and the

broker and other modules know nothing about them.

Crucially, the interface allows each module to share information about program

states, expressed using a single common logic; a module may make facts about

program states available to the other modules, and conversely is able to receive such

facts. In this way the modules can cooperate, using each others’ information to

make their own analysis more precise. The broker coordinates the propagation of

formulae between the modules. As our single common logic we have chosen a first

order logic with transitive closure.

1.2.2 Motivation: conjectured advantages of our system

It is well known that the symbolic representations used in each abstraction domain

are in general not independent, and therefore the domains can benefit from each oth-

ers’ information, using it to make their own analysis more precise. When beginning

this work, we could see two ways in which this might be beneficial:

B1 Verifying programs with diverse features:

We saw in the previous section that the abstract domains in use target specific

aspects of program behaviour, such as numerical relationships, linked data

structures, use of string buffers etc.; doing so brings increased efficiency and

automation and makes the design of the domains more manageable. But in

applications programs, these features are all mixed up together: for instance a

program may use both linked data structures and buffers to store data which

is processed numerically. Verification systems based on a single specialised

domain cannot verify such programs. By combining the different domains

1.2. Our idea: clean cooperation between domains 23

cooperatively, we hoped our system would solve a broader range of verification

problems than its components do.

B2 Using cheap analyses where applicable reduces workload:

We suspected that by using cheap but shallow analyses alongside more ex-

pensive but deeper ones, we could reduce the workload of the more expensive

analyses, because 1. “easy cases” would be taken care of entirely by the cheaper

analyses, and 2. for “difficult cases” the cheaper analyses might still supply

some helpful information to the more expensive ones. That is, we hoped to

gain the depth of the more expensive analyses, but with less computation.

For example, a cheap shallow constant propagation analysis may reduce the

work of predicate abstraction, because abstraction predicates tracking the con-

stant values are no longer needed, so there are fewer calls to the theorem

prover.

The key point about our system is that we try to take advantage of the non-

independence of domains in a modular way. By placing each abstraction domain

behind a common interface, we aimed for the following advantages:

B3 Implementation is more manageable:

The implementor of an analysis module just needs to implement the module

interface: he only has to make his new module “understand” the single com-

mon logic, and the new module will then cooperate with existing ones. The

implementor does not need to know about the abstract constraints used inter-

nally by other modules. Thus, we can develop the verification system in small,

easy to understand parts.

B4 Abstractions can be mixed and matched, with the most appropriate

chosen for each task:

1.3. Specific objectives of this thesis 24

Different verification tasks require or benefit from different kinds of abstrac-

tions. In our scheme, once abstractions have been suitably wrapped as mod-

ules, they can be “mixed and matched” freely, so we can select whatever kinds

are best for each task.

An alternative approach would be to program the interactions between each pair

of domains directly, rather than going through a broker and common logic. We

suspect that this would bring benefits of flexibility and speed: constraints could be

propagated in whatever form is most convenient, and in fact the different analyses

need not even explore the program according to the same schedule; they could be

coroutined in arbitrary ways. But it would also have disadvantages: the interactions

between domains can be subtle and hence difficult and time-consuming to implement

directly, and the implementor needs to understand the structure of all the domains

involved. Additionally, a direct implementation would have to be redone each time

the set of abstractions used was changed.

1.3 Specific objectives of this thesis

The conjectured benefits just described are long-term goals for the approach of

modular domain combination. As such, they are very ambitious, and (necessarily)

a bit nebulous. This doesn’t detract from their importance, but means that we

needed to set some more immediate goals for this work; “a journey of a thousand

miles begins under one’s feet”.

Thus the plan was to design and build a prototype verification system based on our

idea for modular domain combination, and experiment with using it to verify some

example programs, including a moderately-sized case study. We hoped that these

experiments would show enough encouraging results to motivate and inform further

investigation of the approach.

1.3. Specific objectives of this thesis 25

In particular, for our case study, we hoped that the verification would have the

following characteristics:

E1 The program verified is moderately sized, is based on a piece of real-world

software, and uses diverse features.

E2 The verification employs (at least) two sophisticated domains, which are signif-

icantly different.

E3 There is a two-way exchange of information between the sophisticated domains:

each contributes information which the other uses to make its own analysis

better in interesting ways.

E4 One or more additional domains implementing shallow analyses are shown to

help out the sophisticated domains, by handling easy cases or supplying infor-

mation that can be easily obtained. The verification should run faster when

these additional domains are used.

E5 The domains used should implement techniques that are useful for software

verification in general, and not be developed specifically just to make the case

study work.

With these objectives in mind, we chose for our sophisticated domains the predicate

abstraction and three-valued shape analysis techniques, for the following reasons.

These techniques work in fundamentally different ways (the latter is model-based,

while the former uses theorem proving) and have significantly different uses (the

latter is good for modelling linked heap structures but ignores numerical operations,

while the former accounts for numerical operations but doesn’t handle linked heap

structures well). Predicate abstraction is widely known and successful; three-valued

shape analysis is also well-known and extensively written about. Both are widely

applicable techniques and are supported by existing freely available software, such

1.3. Specific objectives of this thesis 26

as the Simplify theorem prover [DNS05] and TVLA [SRW99, LAMS04] which we

planned to reuse as part of our implementation.

The design and implementation of the prototype verification system was thus to

include the following Design and Implementation tasks:

D1 Fix the “target programming language”, i.e. the language in which the pro-

grams to be verified will be written, and formalise its syntax and semantics.

The language should be simple and idealised, but powerful enough to express

interesting programs in a straightforward way.

D2 Define the single common language which analysis modules will use to exchange

information.

D3 Think about the ways in which the analysis modules need to interact with the

central broker, and devise an appropriate interface for the analysis modules to

implement.

This includes not only working out the signatures of the functions exported by

the interface, but also stating how an analysis module should behave in order

to return “sound” results.

D4 Formulate a generic verification algorithm for the broker, which works with

whatever set of analysis modules is presented, and propagates information be-

tween them so that they cooperate. The algorithm must be proved to produce

sound results.

I1 Implement the central broker which coordinates the verification process, using

the algorithm from D4.

I2 Implement an analysis module for predicate abstraction, which supports both

the trivector and monomial variants.

I3 Develop a module for three-valued shape analysis, by appropriately wrapping

the TVLA software. One difficulty here lies in how to “translate” shared

1.4. Contents of this thesis 27

information into the setting of shape graphs, and in the other direction how

to extract logical formulae from shape graphs.

I4 Provide an interface by which users can enter programs, configure and start the

verification process, and monitor the results, including facilities to inspect the

abstract models built, and see where in the model the exchange of information

has proved useful and where it has not.

I5 Implement some shallow analysis modules to help out the sophisticated ones.

Of course, this was only an approximate plan, and we fully expected unforeseen

issues to arise once we started running and experimenting with the prototype; that

was an important purpose of the research.

1.4 Contents of this thesis

Chapter 2: Background draws together the background material to our work. We

discuss the verification problem and introduce inductive verification (which appears

in different guises such as abstract model checking, abstract interpretation and Hoare

logic proofs) in a way that is parametric in the abstraction domain used. We give

example verifications using first order formulae and intervals respectively as the

domain. We survey a range of abstraction domains put forward in the literature.

We end with an example demonstrating that the various abstraction domains are

not independent, so that domains can each make their own analysis more precise if

they cooperate with each other.

Chapter 3: Our approach: basic concepts and algorithms presents and for-

malises the fundamentals of our new verification method. We fix and formalise a

programming language for our verification methods to target (an idealised impera-

tive heap-manipulating language with recursive procedures). We present a logic over

program states (we choose a first order logic extended with transitive closure) which

1.4. Contents of this thesis 28

will serve as the single common language in which our analysis modules exchange

information. We then set out our notion of an analysis module, which is central to

our work: each such module implements an abstraction domain behind a common

interface, through which it interacts with the central coordinating “broker”, sharing

and receiving formulae from other modules. Finally we give a module-based verifi-

cation algorithm for the broker, which works with any collection of analysis module

that is provided (this algorithm is worklist-based and uses procedure summarisation

to handle recursion). We prove that the algorithm terminates and produces sound

results, provided that all analysis modules used satisfy some stated soundness con-

ditions.

Chapter 4: Implementation: the hector system describes our experimental

software tool hector which implements the verification framework developed in

Chapter 3, beginning with an overall summary of the implementation. We outline

the seven analysis modules implemented in hector: three of these provide sophisti-

cated domains (trivector predicate abstraction, monomial predicate abstraction and

three-valued shape graphs) while the other four modules are based on “lightweight”

techniques (a basic type system, a sign analysis, symbolic propagation and a rudi-

mentary heap reference tracking domain). As part of this, we discuss how each

module provides shared information for other modules, and conversely how each

module takes advantage of shared information it receives. Finally we explain how

a user interacts with hector, showing some of the customisable graphical output

with which the system displays its models and counterexamples.

Chapter 5: Case study reports on our verification of an implementation of

the popular puzzle game MineSweeper, which makes use of linked data structures,

pointer arithmetic and recursion. This program can be verified neither by conven-

tional predicate abstraction (which cannot handle linked structures) nor by TVLA

shape analysis (which doesn’t handle pointer arithmetic). Using hector, how-

ever, our predicate abstraction and shape analysis modules work cooperatively, and

1.4. Contents of this thesis 29

hence we can verify the program; this is a good success for our approach. To illu-

minate this, we trace through the model extraction algorithm following a particular

“scenario” of MineSweeper gameplay, and pick out interesting instances of formula

sharing. Another success for hector is that when we also use our four lightweight

modules alongside those for predicate abstraction and shape analysis, the time taken

to verify the program significantly decreases, as does the amount of user guidance

needed.

Chapter 6: Additional model checking features describes three extensions

to our basic verifier. Firstly, we provide a method for checking temporal properties

expressed in a “two-level” fragment of LTL; by “two-level” we mean that the “propo-

sitions” of the temporal formulae are themselves first-order formulae describing the

program’s state. Secondly we provide a method for post-pruning the models, that

is, cheaply pruning away states from which execution “fizzles out”; such states are

automatically infeasible. These extensions were developed because we found that,

even with hector’s existing customisable graphical output, it became difficult to

understand and navigate around models once they had several thousand states. The

third extension is a way to support the falsification of safety properties as well as

their verification, while still only performing over-approximation, by exploiting the

seriality implicit in our programs’ concrete semantics.

Chapter 7: Conclusions concludes the thesis. We revisit the objectives stated

in this introduction and reflect on the extent to which they have been met. We

compare our work with other recent approaches to domain combination. Finally,

we formulate what we believe to be the most important directions for the future

continuation of this research.

1.4.1 Publications

Some material presented in this thesis first appeared in other publications, as follows.

1.4. Contents of this thesis 30

� The workshop paper [Cha06c] first explained the idea of verification based on

cooperating analysis modules (or “analysis plugins” as they were then called).

The paper focused on motivating the approach and sketching an early version

of the verification framework in Chapter 3.

� The journal paper [Cha06a] (and the associated technical report [Cha06b])

detailed, in a far more formal way, a more mature version of the verification

framework (though this had still not reached the current form set out in Chap-

ter 3). An early version of (what became) the hector system was described,

along with detailed accounts of the analysis modules based on TVLA and on

a simple type system.

� The conference “tool paper” [CH07], jointly written with Michael Huth, de-

scribed the hector implementation from Chapter 4, and outlined the “two-

level” temporal logic checking from Chapter 6.

� The workshop paper [CH08], also jointly written with Michael Huth, contained

a formal account of the new falsification method discussed in Chapter 6, along

with an illustrative example of its use and some additional related material

and theorems.

Chapter 2

Background

In this chapter we outline the basic concepts on which our work builds, so that the

reader can understand our work and see it in its proper context. As such, here we

refer mainly to research published before work on this thesis began. In Chapter 7

we will discuss newer research which was published during the completion of this

thesis.

We begin by discussing the verification problem, and how programs and properties

are represented. We then explain the idea of inductive verification (which appears in

different guises e.g. abstract model checking, abstract interpretation and Hoare logic

proofs) in a way that is parametric in the abstraction domain used. Next we survey

a range of abstraction domains put forward in the literature, noting how they fit into

the general framework of inductive verification. We end with the observation that

different abstraction domains are not independent, so if multiple domains cooperate

they can each make their own analysis more precise.

31

2.1. The verification problem 32

procedure IntSqrt(N)

{

var x;

x := 0;

while ((x+1)*(x+1) <= N)

{

x := x+1;

}

return x;

}

Figure 2.1: An example procedure, for calculating integer square root. The left part
shows the procedure as it might be represented in source code; the right part shows
the control flow graph which we work with.

2.1 The verification problem

As stated in the introduction, the verification problem is: given a program and a

description of its desired properties as input, attempt to determine whether or not

the program does indeed have the desired properties.

2.1.1 Programs as control flow graphs

Programs are written as source code, as in Figure 2.1 (left): the procedure given is

for calculating integer square roots. But while source code is a good input format for

programmers, it is inconvenient for program analysis tools. For this reason, many

such tools (e.g. [BR00, LAMS04]) assume that the input programs are represented

with control flow graphs (CFGs) as in Figure 2.1 (right). We shall take this approach

too. We will assume a separate CFG for each procedure in the program. The nodes

of a CFG represent control locations in the procedure, and the edges are labelled

with atomic statements. Execution of a procedure begins at the node labelled “start”

and flows along the arrows.

The problem of converting source code to CFGs needn’t worry us because spe-

2.1. The verification problem 33

cialised software packages such as SOOT [VRHS+99] have been written specifically

to provide program analysis tools with a convenient representation of programs, and

“insulate” the tools from the nuisances of source code. When we build our verifica-

tion system in Chapter 4 we will assume that such preprocessing has already been

done, and will accept as input a textual representation of the CFGs’ edges.

A standard way of giving semantics to such a language is to define

1. a set S of program states

2. a subset I ⊆ S designated as initial states

3. a family of transfer functions f(i) : S → P(S) indexed by the atomic state-

ments i

Typically for simple programs the state consists of an environment, which maps

variables to their values; for heap-manipulating programs there is also a heap com-

ponent which maps memory addresses to their contents. Each transfer function f(i)

describes the effect of the statement i.

For example, for the program in Figure 2.1, a state is simply a value for N and x,

i.e. S = Z × Z. The transfer functions for the statements x := 0, x := x+1 and

if (x+1)*(x+1) > N respectively are

f(x := 0)(N, x) = {(N, 0)}

f(x := x + 1)(N, x) = {(N, x + 1)}

f(if (x + 1) ∗ (x + 1) > N)(N, x) =


{(N, x)} if (x + 1) ∗ (x + 1) > N

∅ otherwise

The last of these shows one reason there is a power set in the signature of the

f(i)s: so that conditional edges can have no successors if their condition is not met.

2.1. The verification problem 34

Another reason is to account for nondeterministic statements, such as a memory

allocation command which allocates any available address.

We will use the name located state to refer to a pair (l, s) where s ∈ S and l is a node

from the CFG. We will write the set of located states as Sloc. For each node of the

CFG, we lift the transfer function to a (partial) function Sloc → P(Sloc). For node 2

in our example, this lifted function is (2, (N, x)) 7→ {(1, (N, x + 1))}. When we do

this for each node, and take the union of the resulting relations, we get a transition

relation semantics(P) ⊆ Sloc × Sloc giving the semantics of the program P .

Finally, we define the set of reachable located states as those which are reachable

from an initial state by following a number of “steps” in semantics(P). Formally

this is defined as a least fixed point:

reach(P) = lfp X . ({start} × I) ∪ X ∪ semantics(P)(X)

2.1.2 Correctness properties and reachability

Now that we have said what our programs look like, we need a way to specify what

properties we would like them to have.

A simple and common way of specifying program properties is to write preconditions,

postconditions and assertions (these are found e.g. in the language Eiffel [Mey92],

the JML specification language [LBR06] and the Spec# system [BLS05]). A precon-

dition is a condition that should hold whenever a particular procedure is entered and

a postcondition should hold whenever the procedure returns. An assertion can be

placed inside a procedure body anywhere a statement can appear, and the asserted

condition should hold whenever that point in the procedure is reached.

In Figure 2.2 (top) we have added a precondition, a postcondition and an assertion

to our example procedure. The postcondition says that the procedure really does

calculate the integer square root, that is, on termination we have x2 ≤ N ≤ (x+1)2.

2.1. The verification problem 35

procedure IntSqrt(N)

@pre: N >= 0;

@post: x*x <= N && N < (x+1)*(x+1);

{

var x;

x := 0;

@assert x >= 0;

while ((x+1)*(x+1) <= N)

{

x := x+1;

}

return x;

}

Figure 2.2: The procedure from Figure 2.1 annotated with a precondition, a post-
condition and an assertion (top), and these annotations reflected in the control flow
graph (bottom).

2.1. The verification problem 36

A standard approach to the problem of checking these specifications, used in e.g.

[BR01], is to reduce it to the reachability problem, by appropriately transforming

or instrumenting the program; this is what we will do.

Definition 2.1.1. The reachability problem is to determine, for a given set B

of “bad” nodes in the CFG, whether execution can reach a node in B i.e. whether

reach(P) contains any elements of the form (l, s) where l ∈ B.

Figure 2.2 (bottom) shows the CFG instrumented to reflect the specifications. We

have added statements which check the asserted condition and postcondition: if

the conditions are met, execution continues as before; if the conditions are violated

execution is transferred to a special error node. Thus the error node is reachable

in the instrumented CFG iff one of the specifications can be violated in the original

program.

The instrumentation in Figure 2.2 (bottom) in effect allows the precondition to be

assumed on entry rather than checked; alternatively, an extra transition to the error

state can be used to check the precondition.

If the programming language contains instructions that may fail — e.g. in the case

of dereferencing a null pointer, or performing an unsafe memory write — these

failures may be treated in the same way, i.e. as transitions to a bad state. Thus

we will automatically check programs for such low-level errors while we do assertion

checking.

There are other ways to specify properties of programs, such as with temporal logic

formulae which we will use later in Chapter 6 but we will concentrate on assertions.

Finally we remark that the non-reachability of bad states is a safety property (e.g.

[Sis94]): if a bad state is reachable, then there exists a finite execution trace which

demonstrates this.

2.2. Decidability issues for verification 37

2.2 Decidability issues for verification

2.2.1 Finite state programs

Finite state programs are those for which the set of reachable states reach(P) is finite.

For such programs, the definition of reach(P) gives an algorithm for computing it:

starting with the initial states {start} × I, repeatedly apply the function X 7→

X ∪ semantics(P)(X), a process which is guaranteed to stabilise in a finite number

of steps. Thus, the reachability problem for finite state programs is decidable:

construct reach(P), and check each element (l, s) ∈ reach(P) in turn to see whether

l is a bad node. If a bad node is reachable we can extract an execution trace leading

to it with only a little more work.

Model checkers such as NuSMV [CCG+02] provide this functionality. The program-

ming language accepted by NuSMV contains only finite data types and constructs,

so we know a priori that all our programs are finite-state.

However, representing sets of (located) states explicitly, by enumerating their ele-

ments, and applying the program to one element after another, is very inefficient.

Hence, NuSMV and other model checkers employ clever “symbolic” techniques, such

as described in [BCM+92], using BDDs (binary decision diagrams) to represent both

the program P and sets of states.

2.2.2 Beyond finite state: hello, undecidability

With infinite state programs — those where reach(P) is infinite — we clearly cannot

enumerate reach(P) explicitly. Repeated application of X 7→ X ∪ semantics(P)(X)

will strictly increase forever. But if we represent sets of states symbolically, is it

possible to compute (a reasonably explicit representation of) reach(P)?

For certain simple classes of infinite state programs, it is indeed possible. In [FS00]

2.3. Verification using inductive properties 38

for example, it is shown that for certain classes of two-counter automata, one can

compute exactly the set of reachable states as a finite union of linear sets, a repre-

sentation which is explicit enough to allow various properties to be checked.

Unfortunately, such results are very fragile. It is shown in [Min61] that as long as

the programmer is allowed two natural number variables, and operations that add

one, subtract one and test for zero, the reachability problem is undecidable. Note

also that if a program location is reachable, then this is witnessed by a finite trace,

of which (under very mild restrictions on the programming language) there are only

countably many. Therefore any semi-decision procedure can be made into a decision

procedure by running it in parallel with a systematic search [HC96, p.152]. Thus

the “second prize” of a semi-decision procedure does not exist either.

To obtain decidable or semi-decidable checking of assertions, then, the restrictions

on the programming language would need to be very severe; too severe to admit

real-world applications programs.

2.3 Verification using inductive properties

Of course, showing that our verification problem is undecidable doesn’t make it go

away: society still needs correct software. So naturally research has focused on

making verification systems which verify correct programs as often as possible. In

this we are aided by the fact that the range of programs a (good) human programmer

would ever write is a tiny subset of the theoretical range, consisting of the same basic

idioms applied over and over [DDH72]. In particular, the programs used in practice

generate states which are in some sense orderly, regular and full of patterns.

These efforts to make practically useful verification systems rest on two basic ideas:

sound symbolic overapproximation and inductive properties. First we introduce the

idea of inductive properties.

2.3. Verification using inductive properties 39

2.3.1 Induction with sets of states

Definition 2.3.1. A set Φ ⊆ Sloc of located states for program P is said to be

inductive if the following conditions hold:

Initialisation: ({start} × I) ⊆ Φ

Consecution: semantics(P)(Φ) ⊆ Φ

Informally these conditions say that all initial states are in Φ, and that one cannot

move from inside Φ to outside Φ by a single step of execution of P .

The following fact explains our interest in inductive properties.

Remark 2.3.2. If Φ is inductive then

reach(P) ⊆ Φ

i.e. Φ is a safe approximation, or overapproximation, of reach(P). In particular, this

means that if, for some set B of bad nodes,

Φ ∩ (B × S) = ∅

then also

reach(P) ∩ (B × S) = ∅

i.e. the bad nodes are never reached.

(We shall not prove this Remark or anything else in this chapter; in Chapter 3, when

we develop in detail the theory of our verification system, we will properly prove

instantiations/analogues of what is given here.)

The point of all this is that, if we can guess a suitable inductive property, we only

need to check three conditions to verify the program, namely the two conditions

2.3. Verification using inductive properties 40

for inductiveness and Φ ∩ (B × S) = ∅. This involves considering just one step of

execution; no fixed points are needed.

In practice it is easier to decompose Φ into the sets of states located at each CFG

node:

Remark 2.3.3. We can write Φ in a decomposed form such as

({start} × Φstart) ∪ ({1} × Φ1) ∪ ({2} × Φ2) ∪ . . .

where each Φl is a subset of S. The conditions for inductiveness then become:

Initialisation: I ⊆ Φstart

Consecution: For each edge from node n to node m, where n is labelled with

statement i, we have f(i)(Φn) ⊆ Φm

and checking that Φ∩ (B×S) = ∅ amounts to checking that for each b ∈ B we have

Φb = ∅.

Figure 2.3 shows an inductive set Φ of states for our example program, decomposed

in this way and placed alongside the CFG. Note that this Φ is an overapproximation

of reach(P) — for example Φ includes the state (3, (N = 4, x = −2)) which is not in

reach(P). Intuitively, we can see that the information about x being nonnegative is

“thrown away” and not carried around the loop — but it is not needed: the inductive

set given is small enough to verify the program, since it contains no elements of the

form (error, s).

2.3.2 General formulation of abstract induction-based veri-

fication

In the previous section we saw how programs can be verified with an appropriate

inductive set of states. However, in that section we were still dealing explicitly with

2.3. Verification using inductive properties 41

Figure 2.3: The instrumented CFG from Figure 2.2 along with an inductive set of
states in green.

infinite sets of states, and we cannot compute in this way.

In this section we remedy that problem, introducing a general framework for abstrac-

tion, where infinite sets of states are represented and reasoned about symbolically.

Definition 2.3.4. An abstraction domain D consists of

1. a countable set A of abstract values

2. a concretisation function γ : A → P(S)

3. a distinguished element ι ∈ A such that I ⊆ γ(ι)

4. a preorder (reflexive, transitive relation) 4 induced by γ, defined by

a1 4 a2 ⇐⇒ γ(a1) ⊆ γ(a2)

5. a distinguished element ⊥ ∈ A such that γ(⊥) = ∅

6. a computable operator t : A×A → A such that a1 4 (a1ta2) and a2 4 (a1ta2)

2.3. Verification using inductive properties 42

7. a computable binary relation v on A such that if a1 v a2 then a1 4 a2

8. for each atomic program statement i with transfer function f(i), an associated

computable abstract transfer function f(i)# : A → A such that if s ∈ γ(a)

then f(i)(s) ⊆ γ(f(i)#(a))

The concretisation function γ gives meaning to the abstract values: γ(a) is the set

of states represented symbolically by a. The induced preorder 4 can be seen as the

entailment relation between abstract values. Alternatively, it is common to speak of

a relation like 4 as an information order: intuitively, the smaller the concretisation

(image under γ) of an abstract value a ∈ A, the more precise a is, or the more

information it expresses.

The operations t and f(i)# on A serve as sound approximations for ∪ and f(i)

on P(S). The element ι ∈ A approximates the initial states of the program. The

relation v is a safe computable approximation of 4. If possible, we would like v to

coincide with 4, but if the latter relation is uncomputable or very complicated we

can make do with any safe stand-in. The element ⊥ is used to label unreachable

nodes.

When working with multiple domains, we prevent confusion by referring to D ’s

components as D.γ, D.f(i)# and so on.

With this definition, we introduce the smallest amount of “machinery” that will

allow us to tell the story of our background chapter; this simplifies the presentation.

Similar but slightly more involved definitions are typically used in the literature: for

the interested reader, [NNH99] gives several definitions similar to ours (see Sections

2.3, 6.1 and 6.3 of that work), including one as in [CC77], and examines their

variations. One common additional assumption is that for any set X ⊆ S of states,

A contains a unique “best” abstract value to represent X. Formally, this means

there exists a ∈ A such that X ⊆ γ(a) and for all a′ ∈ A, if X ⊆ γ(a′) then

a 4 a′. Then an “abstraction function” α : P(S) → A is used to map each subset

2.3. Verification using inductive properties 43

X ⊆ S to its best abstract representation. Another common assumption is that

the abstract transfer functions are monotone (given a more precise approximation

as input, they produce a more precise approximation as output). In return for such

assumptions, one obtains additional guarantees about the analysis. In any case,

when we introduce our verification framework in Chapter 3 we won’t need to worry

particularly about these issues, because our framework will treat all domains as

though they are power sets, which are simple and familiar structures.

We now shadow the development of the previous Subsection, 2.3.1, but using ab-

stract or symbolic values in place of explicit sets of states. The following Remark is

the abstract parallel of Remark 2.3.3.

Remark 2.3.5. By assigning an abstract value (i.e. an element of A) at every CFG

node, we abstractly represent a set of located program states. That is, we use a list

[(start, astart), (1, a1), (2, a2), . . .]

to represent the located state set

({start} × γ(astart)) ∪ ({1} × γ(a1)) ∪ ({2} × γ(a2)) ∪ . . .

The following two conditions are sufficient (but not necessary) for the set so repre-

sented to be inductive:

Initialisation: ι v astart

Consecution: For each edge from node n to node m, where n is labelled with

statement i, we have: f(i)#(an) v am

It follows from inductiveness that if a CFG node is labelled with ⊥ then execution

of the program never reaches that node; if all “bad” nodes are labelled with ⊥ then

the program is correct.

2.3. Verification using inductive properties 44

The important point is that the above conditions are computable, whereas those in

Remark 2.3.3 are not.

Note that if a bad node is labelled with something other than ⊥, then the preceding

Remark 2.3.5 does not reveal anything about the program’s correctness [CGL92]:

perhaps the program is actually incorrect, but perhaps we just need to choose a

more precise inductive set and then verification will succeed. Thus Remark 2.3.5

can “only” show that programs are correct, which is our main aim. If we want to

show that programs are incorrect without generating an explicit counterexample,

some other mechanism is needed; we will introduce one in Chapter 6.

2.3.3 Examples of abstract induction-based verification

Example 1: First-order formulae

When proving programs correct using the well-known Hoare logic [Hoa69, Apt81],

and when using Dijkstra’s calculus for deriving programs that are correct by con-

struction [Dij75], first-order formulae serve as the symbolic representations of sets

of states. We now show how the set of such formulae together with a sound theorem

prover gives rise to an abstraction domain.

We take A to be the set of first order formulae, over some vocabulary appropriate

for describing program states. The distinguished elements ι and ⊥ are the formulae

true and false respectively.

The concretisation function γ is given by the semantics of the logic:

γ(Φ) := JΦK

where JΦK is the set of states in which the formula Φ holds. Consequently the induced

information order 4 is just entailment in the logic. The operator t is simply the

logical connective ∨.

2.3. Verification using inductive properties 45

It remains to say how to implement the relationv and the abstract transfer functions

f(i)#. To implement f(i)# we need to introduce the strongest postcondition operator

as in [Bac88]. The strongest postcondition SP(i)(Φ) tells us everything we can know

about the state which results from executing statement i in a state satisfying Φ. It

is defined by the rules

SP(x := E)(P) , ∃x′.P [x\x′] ∧ x = (E[x\x′])

SP(if Q)(P) , P ∧Q

where P [x\E] denotes the substitution of every free occurrence of variable x in P

by the expression E. (Throughout, we use , for meta-equality when we wish to

distinguish this from the equality predicate inside a logic, which is always written

with the = symbol.) We use SP to implement the abstract transformers:

f(i)#(Φ) , SP(i)(Φ)

We can implement v by using any sound theorem prover1: if the theorem prover

can prove Φ1 → Φ2 then we say Φ1 v Φ2.

Figure 2.4 (top) demonstrates this abstraction domain on the integer square root

program: we have assigned a formula (i.e. an abstract value) to each CFG node.

Checking the abstract initialisation and consecution conditions from page 43, we see

that (assuming the theorem prover can prove all the simple validities that arise) the

located state set represented is inductive. Here we shall show just the consecution

check for the edge from 4 to 3. Recall that we have to show that

f(x := x + 1)#(a4) v a3

1Our use of “sound theorem prover” is intended to be as inclusive as possible; we also mean
to include those programs described as decision procedures, SMT (satisfiability modulo theories)
solvers etc..

2.3. Verification using inductive properties 46

Figure 2.4: The integer square root CFG from Figure 2.2, with assignments of ab-
stract values to the program’s locations, using first-order formulae (top) and intervals
(bottom) as the abstract values.

2.3. Verification using inductive properties 47

which expands as follows (using ; to mean “rewrites to” or “evaluates to”)

; f(x := x + 1)#((x + 1)2 ≤ N) → x2 ≤ N

; SP(x := x + 1)((x + 1)2 ≤ N) → x2 ≤ N

; ∃x′.(((x + 1)2 ≤ N)[x\x′] ∧ x = (x + 1)[x\x′]) → x2 ≤ N

; ∃x′.((x′ + 1)2 ≤ N ∧ x = x′ + 1) → x2 ≤ N

and which a reasonable theorem prover could prove by noticing that x′ must be x−1

and simplifying:

; (x− 1 + 1)2 ≤ N ∧ x = x− 1 + 1 → x2 ≤ N

; x2 ≤ N ∧ x = x → x2 ≤ N

; x2 ≤ N → x2 ≤ N

Thus we have an inductive property. This, together with the fact that the bad node

error is labelled with ⊥ i.e. false, means we have verified the program.

(It is true that Figures 2.3 and 2.4 (top) look quite similar, but there is an important

difference: in the first, nodes are explicitly labelled with infinite sets of states with

which we cannot compute, whereas in the second the labels are formulae i.e. symbolic

representations of sets of states, with which we can compute.)

In fact, in principle any reasonable logic over program states can be used in this way,

though in practice a restricted first order logic is typically used due to the need for

an effective automated theorem prover. With other logics it may also be necessary

to use a sound approximation of the strongest postcondition, if this either cannot

be expressed in the logic or cannot be obtained by a computable function.

2.3. Verification using inductive properties 48

Example 2: Intervals

We shall now apply a simple interval domain to our running example program,

analysing only the variable x. Here we take our abstract space A to be

A :=
{

[a, b] | a ∈ Z ∪ {−∞} , b ∈ Z ∪ {∞} , a ≤ b
}
∪ {⊥}

We interpret [a, b] as an interval in Z which contains its end-points, i.e.

γ([a, b]) := {(N, x) | a ≤ x ≤ b}

and interpret the bottom element ⊥, as usual, by γ(⊥) = ∅. Because the constraints

are so simple, we can implement precise entailment checking, i.e. we can achieve

v = 4:

[a, b] v [c, d] iff c ≤ a and b ≤ d

Applying t to two intervals generates the smallest interval that contains their union.

The transfer functions perform interval arithmetic to track linear updates to the

variables; we omit the details.

In Figure 2.4 (bottom) we show one inductive abstract property: all nodes in the loop

have been assigned the interval [0, +∞]. Intuitively, the only information carried

around the loop is that x is nonnegative; everything else is “thrown away”. This

assignment of abstract values isn’t precise enough to verify the postcondition and

consequently at the bad state we don’t have ⊥. But the assertion that x ≥ 0 can

be verified in this way.

2.4. Obtaining inductive properties 49

2.4 Obtaining inductive properties

2.4.1 Where do inductive properties come from?

In the previous section, we assumed that an assignment of abstract values to CFG

nodes was somehow obtained, and discussed how to check that this assignment was

inductive and verified the program. But where does such an assignment come from?

One approach to finding a suitable assignment is simply to ask the user to suggest

it. In machine-checked Hoare logic proofs, for instance, the user must give a loop

invariant for each loop. But providing these annotations imposes a heavy burden on

programmers, which they do not seem prepared to embrace: whereas programmers

are happy to annotate their variables with types in order to catch errors, asking for

loop invariants appears too demanding. In any case, as computer scientists we are

in the business of turning the work over to the computer.

Various methods for guessing likely invariants, which can then be checked, have been

tried, including

simple heuristics: Here simple rules are used to generate likely invariants from

the program; [Kal90] gives rules such as:

Replacing constants by variables: If the required postcondition refers to

a constant (or a variable which is not modified in the loop body), obtain

a candidate invariant by replacing it with a loop-modified variable

The Houdini program [FL01] implements such heuristics to propose invariants

for Java programs.

dynamic invariant generation: Here we first record execution traces of the pro-

gram running on a test suite. Then a set of relations between variables is

generated, from a simple grammar, and checked against the stored execution

2.4. Obtaining inductive properties 50

var worklist : node set
var astart, aerror, a1, . . . , ak : A

worklist := {start}
astart := ι
for each v ∈ {error, 1, . . . , k} do av := ⊥

while worklist 6= ∅ do
choose v ∈ worklist
worklist := worklist− {v}
for each edge from v to v′ labelled with i do

let a := f(i)#(av) in
if not a v av′ then

av′ := av′ t a
worklist := worklist ∪ {v′}

end if
end let

end for
end while

Figure 2.5: Iterative worklist algorithm for forward propagation. This algorithm
uses an arbitrary abstraction domain as defined in Definition 2.3.4.

traces. Any relations not refuted in one of the traces will be proposed as in-

variants. The most widely known implementation of this technique is the tool

Daikon [PE04].

In this thesis we will use a technique called forward propagation to obtain inductive

properties. Given an abstraction domain, this widely used technique finds strong

(precise) assignments of abstract values that are inductive by construction.

2.4.2 Forward propagation

The idea of forward propagation [CC77]2 is to start with a very strong property

(initially, assigning ⊥ at all nodes other than start) and gradually weaken it until it

becomes inductive. Figure 2.5 gives the algorithm. If this process terminates then

we know that we have an inductive property.

2Forward propagation appears in [CC77], though the term “forward propagation” is not used
for it there; this term appears in e.g. [SSM05, GT07, RCK07].

2.4. Obtaining inductive properties 51

Because we start with a strong property and gradually weaken it, we hope to reach

a strong solution, and therefore have more chance of verifying the program. Indeed,

under certain conditions it can be shown that the above iterative process produces,

after ω iterations, the best solution (e.g. [NNH99]). Unfortunately, of course, the

process doesn’t always terminate, as the following example shows. The next section

gives a way to attack this non-termination problem.

Let’s see what happens if we run the forward propagation algorithm on our example

program, using interval analysis. Initially, we have astart = ι = [−∞, +∞] and ⊥ for

all other nodes, and the worklist contains just node start. So we remove node start

from the worklist, and generate its successor for the edge from start to 1 labelled

with if N >= 0:

f(if N ≥ 0)#([−∞, +∞]) = [−∞, +∞]

We then see whether this new value, [−∞, +∞], is “covered” by the existing value

at 1 using v. We don’t have [−∞, +∞] v ⊥ = a1, and so we need to merge the

two values with t. This gives [−∞, +∞] t ⊥ = [−∞, +∞] as the new value of a1,

and causes node 1 to be added to the worklist.

Next we remove node 1 from the worklist, and generate the successors for the edge

from 1 to 2 labelled with x := 0:

f(x := 0)#([−∞, +∞]) = [0, 0]

This isn’t covered by the value currently at node 2, as we don’t have [0, 0] v ⊥ = a2,

so we set the new value at 2 to [0, 0]t⊥ = [0, 0] and add node 2 to the worklist. At

this point we have reached the state shown in Figure 2.6(a).

We will now see the reason for non-termination. After the algorithm has propagated

around the loop once, we reach the situation in Figure 2.6(b). From there, we

generate f(if (x + 1)2 ≤ N)#([0, 1]) = [0, 1] so a4 becomes [0, 1] t [0, 0] = [0, 1].

Then we generate f(x := x + 1)#([0, 1]) = [1, 2] so a3 becomes [1, 2] t [0, 1] = [0, 2].

2.4. Obtaining inductive properties 52

Figure 2.6: Part of the CFG of our example program (from Figure 2.2) shown at
three stages in the running of the forward propagation algorithm (Figure 2.5) using
an interval analysis for x. Nodes marked with W are in the worklist.

At this point we reach the situation shown in Figure 2.6(c), which is the same as (b)

except the top end of the intervals has increased by one. In this way the algorithm

will move around the loop again and again, generating [0, 3], then [0, 4], and so on,

and the process will not terminate.

2.4.3 Finite and finite-height domains ensure termination

In the example above, the computation failed to stabilise because at each iteration

we only weakened the abstract constraints a very little bit, so the computation

approached the limit “very slowly” and never reached it. To avoid this we need to

“accelerate” the computation, so that “bigger steps” are taken on some iterations

and the computation stabilises.

Much existing work uses widening operators [CC76, CC92b] for this purpose. A

widening operator ∇ works like t except that it takes bigger steps; under appro-

priate conditions the use of widening operators guarantees the convergence of the

computation.

In this thesis, however, we shall stick to a simpler approach, which is to make the

2.5. Survey of well-known abstraction domains 53

abstraction domain finite-height. We say that an abstraction domain is finite-height

if every 4-increasing sequence of abstract values is eventually constant. In particular

this must be true if A is finite.

To make the interval domain finite-height, we might decide that whenever we see

an interval with an end-point below −100 or above 100, we will weaken this to −∞

or ∞ respectively, that is to say, we might replace A by the subset

A′ := {[a, b] ∈ A | a ≥ −100 or a = −∞, and b ≤ 100 or b = ∞} ∪ {⊥}

Using this finite-height domain, the forward propagation algorithm terminates on

our example program, giving the inductive property shown (by the green values) in

Figure 2.4 (bottom).

Finite-height abstractions are said to be less powerful than widening operators

[CC92b]. On the other hand, they are conceptually simpler.

2.5 Survey of well-known abstraction domains

In the previous section we saw how, once we have chosen an abstraction domain and

either made it finite-height or supplied a widening operator, the forward propagation

algorithm can automatically discover inductive properties.

Successful use of forward propagation depends crucially on the choice of a “good”

(i.e. appropriate) abstraction domain: if the abstraction retains too much irrelevant

information this results in high computational cost, but if relevant facts are thrown

away it will not be possible to verify the program. This is exactly the problem

we concern ourselves with in this thesis: by allowing the user to build complex

domains as ad-hoc combinations of existing components, we hope to make it easier

to construct an appropriate domain.

2.5. Survey of well-known abstraction domains 54

We shall introduce the idea of domain combination shortly. But before that, in

this section we survey some of the well-known abstraction domains presented in

the literature (we cannot hope to be exhaustive), roughly divided into the following

categories:

1. Predicate abstraction

2. Classical program analyses

3. Systems for shape analysis

4. Numerical domains

2.5.1 Predicate abstraction

Monomial predicate abstraction

Predicate abstraction is essentially a disciplined, finite-domain way to use a logic

over program states. The idea is to group the program states into equivalence classes

based on the truth values they give to a finite collection of predicates. We choose

abstraction predicates P 1, . . . , P n and then abstract each state s to the formula

Ψ , Ψ1 ∧ . . . ∧Ψn where

Ψi ,


P i if P i is true in s

¬P i if P i is false in s

Such formulae Ψ are called monomials. Each monomial over n abstraction predicates

can be succinctly represented as a vector of n bits, where the ith bit records the

polarity of P i, and sets of monomials can be succinctly represented using BDDs.

In monomial predicate abstraction, elements a of the set A are sets of monomials

formed as above. These are sufficient to express any boolean combination of the

2.5. Survey of well-known abstraction domains 55

abstraction predicates. Because only 2n monomials can be made from n abstraction

predicates, this domain is finite. To concretise such a set of monomials, we just take

the truth set of each monomial, and form their union.

γ(a) ,
⋃
Φ∈a

JΦK

The element ⊥ is the empty set and v is the subset relation ⊆.

The transfer functions can be implemented using a theorem prover for the logic and

the strongest postcondition operator, as the following example shows.

Example 2.5.1. Consider the statement x := x - 1 in a program with a single

integer variable, and suppose we have chosen two abstraction predicates P 1 , x2 = 1

and P 2 , x > 0. Let us find the successors under that statement of the single

monomial P 1 ∧ P 2, i.e. let us calculate

f(x := x− 1)#({P 1 ∧ P 2})

Should we include ¬P 1 ∧ P 2 in the successor set of monomials? The implication

SP(x := x− 1)(P 1 ∧ P 2) → ¬(¬P 1 ∧ P 2)

states that after executing x := x - 1 in a state satisfying P 1 ∧ P 2 we cannot be

in a state satisfying ¬P 1 ∧ P 2. This expands as follows:

; ∃x′.(P 1 ∧ P 2)[x\x′] ∧ x = (x− 1)[x\x′] → ¬(¬P 1 ∧ P 2)

; ∃x′.(x2 = 1 ∧ x > 0)[x\x′] ∧ x = (x− 1)[x\x′] → ¬(¬x2 = 1 ∧ x > 0)

; ∃x′.(x′2 = 1 ∧ x′ > 0) ∧ x = x′ − 1 → ¬(¬x2 = 1 ∧ x > 0)

2.5. Survey of well-known abstraction domains 56

and from here a reasonable theorem prover could prove the formula by noting that

x′ must be x + 1 and simplifying down to a trivial implication:

; (x + 1)2 = 1 ∧ x + 1 > 0 → x2 = 1 ∨ x ≤ 0

; (x + 1 = 1 ∨ x + 1 = −1) ∧ x + 1 > 0 → x2 = 1 ∨ x ≤ 0

; (x = 0 ∨ x = −2) ∧ x ≥ 0 → x2 = 1 ∨ x ≤ 0

; x = 0 → x2 = 1 ∨ x ≤ 0

Because this formula is proved, we should not include ¬P 1∧P 2 in the successor set.

On the other hand, we should include ¬P 1 ∧ ¬P 2: the corresponding formula is

SP(x := x− 1)(P 1 ∧ P 2) → ¬(¬P 1 ∧ ¬P 2)

; ∃x′.(P 1 ∧ P 2)[x\x′] ∧ x = (x− 1)[x\x′] → ¬(¬P 1 ∧ ¬P 2)

; ∃x′.(x2 = 1 ∧ x > 0)[x\x′] ∧ x = (x− 1)[x\x′] → ¬(¬x2 = 1 ∧ ¬x > 0)

; ∃x′.(x′2 = 1 ∧ x′ > 0) ∧ x = x′ − 1 → ¬(¬x2 = 1 ∧ ¬x > 0)

which no sound theorem prover will prove because it is not valid (e.g. put x′ = 1

and x = 0).

Note that this approach implicitly takes into account the possibility of an incomplete

theorem prover: if the prover fails to prove an implication which is valid (perhaps the

prover “times out” without discovering a proof), this results in an extra successor

state being generated, which is less precise but still sound. Incompleteness of the

prover can never cause fewer successors to be generated.

Predicate abstraction can discover a wide range of relationships between variables

(compared to interval analysis for instance), and has been successful: for example,

it is now used commercially by Microsoft to verify interface usage properties of

device drivers, in a tool called Static Driver Verifier (SDV) [BBC+06]. Well-known

implementations of predicate abstraction for C programs are SLAM [BR01] (which

2.5. Survey of well-known abstraction domains 57

is the “heart” of SDV), BLAST [HJMS02] and MAGIC [CCG+04].

However there are also problems with predicate abstraction. Firstly, predicate ab-

straction tends to be based on first-order logics, which cannot express many impor-

tant heap properties needed to reason about programs that use linked data structures

(see later Section 2.5.3). Secondly, there is the issue of how to obtain “good” choices

for the abstraction predicates: are these suggested by the user, or is some automatic

method tried?

Finally, the computational cost of predicate abstraction is relatively high because

successor computations require many invocations of a theorem prover. In the worst

case, each abstract state can contain exponentially many monomials (in the number

n of abstraction predicates), and for each one of these, an exponential number of

calls to the theorem prover is needed (one for each potential successor monomial).

Trivector predicate abstraction

One way to understand the need for an exponential number of theorem prover calls is

as follows. Intuitively, each time monomial predicate abstraction cannot determine

whether an abstraction predicate P i will be true or false in the successor state,

a “case split” is performed giving two lots of successor states: one with P i (the

undetermined predicate holds) and one with ¬P i (the undetermined predicate does

not hold). With n abstraction predicates, up to n such case splits are possible,

giving 2n cases.

Trivector predicate abstraction [BPR01] is a variant of predicate abstraction in which

an undetermined abstraction predicate no longer results in a case split: such a pred-

icate is simply omitted from the successor constraint. This reduces the computation

cost: now only one formula need be maintained at each CFG node (as opposed to

a set of formulae) and successor computations need only a linear number of the-

orem prover calls. However, precision is lost, because relationships between the

2.5. Survey of well-known abstraction domains 58

abstraction predicates are no longer tracked.

In trivector predicate abstraction, abstract values a ∈ A are formulae (not sets of

formulae) of the form Ψ1 ∧ . . . ∧ Ψn where each Ψi is one of P i, ¬P i, true. Each

such formula can be succinctly represented as a vector of n trits (ternary digits),

or trivector. Concretisation is trivial because each a ∈ A is already a formula:

γ(a) = JaK. Here we give an example of how a theorem prover, together with the

strongest postcondition operator, is used to calculate the successor functions.

Example 2.5.2. Consider as before the statement x := x - 1 in a program with a

single integer variable, and two abstraction predicates P 1 , x2 = 1 and P 2 , x > 0.

Let us find the successors under that statement of ¬P 1 ∧ P 2, i.e. let us calculate

f(x := x− 1)#(¬P 1 ∧ P 2)

After the statement has executed we know

SP(x := x− 1)(¬P 1 ∧ P 2)

which expands to

; SP(x := x− 1)(¬x2 = 1 ∧ x > 0)

; ∃x′.(¬x2 = 1 ∧ x > 0)[x\x′] ∧ x = (x− 1)[x\x′]

; ∃x′.¬x′2 = 1 ∧ x′ > 0 ∧ x = x′ − 1

Now we check each of the abstraction predicates in turn, to see whether it or its

negation is entailed by the above. For P 1 we invoke the theorem prover on the

implication (
∃x′.¬x′2 = 1 ∧ x′ > 0 ∧ x = x′ − 1

)
→ x2 = 1

2.5. Survey of well-known abstraction domains 59

which cannot be proved (as it is not valid; put e.g. x′ = 3, x = 2) and then on

(∃x′.¬x′2 = 1 ∧ x′ > 0 ∧ x = x′ − 1) → ¬x2 = 1

which also cannot be proved (as it is not valid; put e.g. x′ = 2, x = 1). Thus P 1

will be omitted from the successor, that is, Ψ1 will be true.

But P 2 will be included in the successor, as a reasonable theorem prover will prove

∃x′.¬x′2 = 1 ∧ x′ > 0 ∧ x = x′ − 1 → x > 0

e.g. by noting that x′ must be x + 1 and simplifying as follows:

; ¬(x + 1)2 = 1 ∧ x + 1 > 0 → x > 0

; ¬(x + 1 = 1 ∨ x + 1 = −1) ∧ x ≥ 0 → x > 0

; ¬(x = 0 ∨ x = −2) ∧ x ≥ 0 → x > 0

; x 6= 0 ∧ x 6= −2 ∧ x ≥ 0 → x > 0

; x 6= 0 ∧ x ≥ 0 → x > 0

; x > 0 → x > 0

Thus we have

f(x := x− 1)#(¬P 1 ∧ P 2) = P 2

compared to the result for monomial predicate abstraction, where there will be a

“case split” on P 1:

f(x := x− 1)#({¬P 1 ∧ P 2}) = {¬P 1 ∧ P 2, P 1 ∧ P 2}

Note that again any incompleteness in the theorem prover is implicitly handled

safely.

2.5. Survey of well-known abstraction domains 60

2.5.2 Classical program analyses

Like software verification, the field of program analysis [NNH99] is concerned with

extracting from a source program some semantic information describing its opera-

tion. The difference, broadly speaking, is that program analysis is concerned with

detecting low-level properties which enable programs to be compiled to efficient code,

whereas software verification is concerned with high-level properties meaningful to

a system designer. Making a program run quickly is not the job of verification.

Still, some algorithms from program analysis may suit our purpose because, although

they infer fairly shallow properties, they do so quickly, and these properties may aid

the operation of a subsequent deeper analysis.

1. Alias analysis: Aliasing is when two syntactically distinct expressions (per-

haps two pointer or reference variables) refer to the same memory location.

Alias analysis gives a conservative approximation of which pairs of expressions

might be aliased at each program point. Many algorithms are known for this

problem: see for example [WWA+01].

2. Constant propagation: (e.g.[WZ91]) Here one tries to detect expressions

that are constant at a particular program point, i.e. will always evaluate to

the same value at that point.

3. Mod/Ref analysis: This analysis discovers which parts of a program’s store

(i.e. which variables and which heap locations) might be referenced or modified

by each part of the program. A notable paper in this regard is [SR05], which

shows how to conservatively characterise the objects that might be modified

by a given Java method.

2.5. Survey of well-known abstraction domains 61

2.5.3 Linked data structures and shape

It has been part of programming folklore for a long time (e.g. [Hoa73]) that programs

which use pointers and linked data structures are easy to get wrong, and difficult to

reason about. The most immediate difficulty is that Hoare logic’s elegant substitu-

tion axiom scheme for assignment

` {P [x\E]} x := E {P}

does not apply if we replace the variable x on the left hand side with a field access,

e.g. as in x.f := E. This is because of aliasing: if another variable y is equal to

x (is an alias for x) then the value of y.f will also change, yet this is not reflected

in the substitution rule. Morris’ general assignment axiom scheme [Mor82], which

essentially substitutes on the basis of semantic rather than syntactic identity, allows

reasoning about assignments made via pointers: defining P
/x
E to be the result of

replacing each reference y in P with

if address(y) = address(x) then E else y

we have

` {P /x
E } x := E {P}

Yet reasoning about pointer programs is still very difficult. Each time we need to

use the above assignment rule, we need to derive a set of equalities and inequalities

between pointer variables. Where do these come from? Also, in general we are

interested in verifying specifications that describe the structure of the heap. For

example, the postcondition of a routine that inserts a new element into a linked list

will say that the new element is now reachable from the list head by following some

number of ‘next’ pointers. From [Mor82]:

“The formal treatment of linked data structures is significantly more

2.5. Survey of well-known abstraction domains 62

complex than that of simpler structures because it is necessary to handle

not just properties of individual nodes, but also relationships between

the nodes.

The most fundamental of these relationships is that of connectivity. If

the verification of programs manipulating linked data structures is to

be manageable, then it is essential that connectivity relations can be

comfortably maneuvered through changes in the data structure.”

What is needed is some way to represent the configuration, or topology, or “shape”

of the heap. This includes, in particular, which nodes can be reached from which

others. We now survey some of the abstractions proposed in the literature for

representing the shape of the heap.

Transitive closure logic

Suppose we need to express a reachability condition, such as that the (object pointed

to by) variable v can be reached from the (object pointed to by) variable u by

following f -fields. First order logic with transitive closure [Imm98], or FO(TC),

augments first order logic with an operator for expressing such properties: formulae

of the form

TC[a,b] [Φ(a, b)] (t, t′)

are true just when there is some finite sequence of points starting at t and ending

at t′, such that each pair of successive points (a, b) in the sequence satisfies Φ(a, b).

FO(TC) is desirable because it is very expressive, e.g. we can write

� x points to an acyclic list (using f -edges):

TC[a,b] [f(a) = b] (x, null)

� Only the g-fields of objects transitively reachable from x by f -fields may be

null:

2.5. Survey of well-known abstraction domains 63

T1 axiom scheme:

∀u, v : TC[a,b] [Φ(a, b)] (u, v) ↔ (u = v)∨
(
∃w : Φ(u, w) ∧ TC[a,b] [Φ(a, b)] (w, v)

)
Induction axiom scheme:

(∀z : Z(z) → P (z)) ∧ (∀u, v : P (u) ∧ Φ(u, v) → P (v))

→ ∀u, z : Z(z) ∧ TC[a,b] [Φ(a, b)] (z, u) → P (u)

“No exit” colouring axiom scheme:

∀u, v : A(u) ∧ ¬A(v) → ¬Φ(u, v)

→ ∀u, v : A(u) ∧ ¬A(v) → ¬TC[a,b] [Φ(a, b)] (u, v)

Figure 2.7: Some sound but incomplete first order axioms for transitive closure,
taken from [LAIR+05]

∀o g(o) = null → TC[a,b] [f(a) = b] (x, o)

To reason about such properties, one could use induction on natural numbers, but

this is not done in practice because automating induction proofs is difficult and such

proofs would be required in each small step of the analysis. Instead, a common idea

is to use induction to manually derive some sound (but incomplete) rules about

reachability, such as those in Figure 2.5.3. These are then given to an ordinary

first order theorem prover, which is freed from considering induction or the natural

numbers at all. This approach is taken in [Mor82, Nel83] and recently in [LAIR+05,

LQ06].

Decidable logics with reachability

In addition to searching for heuristic techniques for reasoning about reachability,

one can investigate whether, by restricting the logic and/or the class of models, one

may find a logic with reachability which is decidable and yet sufficiently expressive

to be worthwhile. We can then simply throw all queries in such a logic to a decision

procedure. The ability to express forms of reachability appears in logics in various

guises: explicitly as in the F operator of LTL [Pnu77], as fixed-point operators, as

2.5. Survey of well-known abstraction domains 64

inductively defined predicates, as transitive closure operators and in second-order

logics which can quantify over sets.

Unfortunately, even gentle logics tend to become undecidable when reachability is

added. For example, first order logic with two variables is decidable, but adding

transitive closure leads to undecidability [GOR97]. Nevertheless, several decidable

logics which can express some form of reachability are known, with various strengths

and weaknesses, including WS2S [KM01], ∃∀(DTC+[E]) [IRR+04], the guarded

fixed point logic µGF [GW99] (which includes the modal µ-calculus [Koz83]), and

LRP2 [YRS+06].

Logics with some form of reachability can be used with the predicate abstraction

technique; see [DN03] for an example of this.

PALE and graph types

The Pointer Assertion Logic Engine (PALE) [MS01] tool is used to verify that proce-

dures manipulating graph type data structures preserve their consistency. A graph

type data structure [MS01] consists of some acyclic tree backbones augmented by

some well-behaved “extra” pointers governed by a datatype invariant. A linked list

where each node has a pointer to the last node is a graph type, as is a binary tree

where the leaves are threaded into a cyclic list.

Graph type heaps can be encoded conveniently as models of the tree logic WS2S be-

cause the tree structure needed to handle the backbones is already built in. PALE

accepts programs in a C-like language, ignoring arithmetic statements. The pro-

grammer must provide loop invariants and a special graph type declaration for each

type used.

Figure 2.8 contains a graph type declaration for doubly linked lists. The ‘next’ fields

2.5. Survey of well-known abstraction domains 65

type Node = {

bool value;

data next:Node;

pointer prev:Node[this^Node.next={prev}];

}

Figure 2.8: An example of a graph type declaration for the PALE tool. Here we
declare nodes to contain a Boolean data field value and pointer fields ‘next’ and
‘prev’, which we constrain to be inverses of each other with the declaration pointer

prev:Node[this^Node.next={prev}]. (Here ^Node.next indicates a backward
step along the ’next’ field.)

form the backbone, and the ‘prev’ fields are extra pointers; the declaration

pointer prev:Node[this^Node.next={prev}]

constrains these to be the inverses of the ‘next’ fields (^ is the “backwards” operator,

so this^Node.next denotes starting at this and going one step backwards along

field Node.next). PALE generates verification conditions in WS2S and sends them

to the MONA tool [KM01] which decides them using tree automata. Thus — within

its limited domain of application — the shape analysis of PALE is utterly precise.

TVLA and three-valued shape graphs

In this approach, taken by the TVLA (Three-Valued Logic Analyser) system [SRW99,

LAMS04], sets of concrete heaps are represented by three-valued models.

With each concrete program state we associate a model of a predicate logic with

unary and binary predicates, as in Figure 2.9. The universe of these models repre-

sents the set of allocated objects. For each (pointer-typed) program variable v there

is a unary predicate V which holds only at the object pointed to by v. Similarly,

pointer-typed fields are represented by binary predicates. We may choose to have

additional predicates, such as unary predicates giving the types of objects. Note

that the data fields of objects are abstracted away.

2.5. Survey of well-known abstraction domains 66

Figure 2.9: A concrete heap in TVLA

Figure 2.10: An abstract heap, representing a linked list of length three or more,
with v pointing to the first or second element. This is one abstraction of the concrete
heap in Figure 2.9

To give the semantics for an instruction i we provide an update rule for each predicate

changed by i. These express the values of the predicates after execution of i in terms

of their values beforehand and may make use of transitive closure. For instance the

instruction v := u.f has the update rule

V (o) := ∃p(U(p) ∧ F (p, o))

Abstraction is achieved by moving to a three-valued semantics, where there is an

extra truth value unknown in addition to the usual true and false. Appendix A.1

gives an introduction to three-valued logic for readers unfamiliar with it.

In abstract states, such as the one in Figure 2.10, predicates may take the value

unknown, which is depicted as a dashed line. Dashed edges show where a variable or

field might point, or is allowed to point, without requiring this to be the case. Nodes

representing one or more concrete nodes, called summary nodes, are also allowed,

and are drawn with a double circle. The abstract heap in Figure 2.10 represents all

linked lists of length three or more starting at head and where v points to the first

2.5. Survey of well-known abstraction domains 67

or second element; this includes the heap in Figure 2.9.

Sound abstract transfer functions are obtained automatically simply by interpreting

the update rules in three-valued logic. In addition to the core predicates, which

are used to define the semantics of the language, one may introduce additional

instrumentation predicates, and associated update rules, to increase the precision of

abstract heaps. Commonly these record reachability properties.

Separation logic

Separation logic [ORY01] addresses the difficulties in using Morris’ axiom in a dif-

ferent way. Its characteristic feature is that it extends first order logic with a new

connective, ?, the separating or spatial conjunction. The formula P ? Q is satisfied

by heaps which can be partitioned into a part satisfying P and a part satisfying Q.

For example, using the predicate Tree(v) to denote a binary tree rooted at v, the

formula

Tree(x) ? Tree(y)

means that the heap contains two disjoint trees rooted at x and y respectively. Since

the two trees must be disjoint, this implies that x 6= y.

The key point is that once we have partitioned the heap in this way, we can make a

change to one of the sections and we know that properties of the other sections will

be preserved. This idea is embodied in the frame rule:

{P}C{Q}
{P ? R}C{Q ? R}

modifies(C) ∩ free(R) = ∅

where free(R) denotes the free variables in the formula R, and modifies(C) denotes

the variables modified by the program fragment C. For example, suppose dispose(v)

is a routine that deallocates a binary tree rooted at v, specified by

{Tree(v)} dispose(v) {empty}

2.5. Survey of well-known abstraction domains 68

(where empty is the empty heap, which is a unit of ?). Then the frame rule allows

us to infer

{Tree(x) ? Tree(y)} dispose(y) {Tree(x) ? empty}

The nice thing about separation logic is that weakest preconditions for heap update

can be expressed very neatly, so a growing number of manual proofs have been done

this way, such as in [BTSR04, PBO07]. Some decidable fragments of separation logic

are known [BCO05b], and separation logic has been used for automated program

verification in the Smallfoot tool [BCO05a].

Other domains for the heap

Numerous other domains for reasoning about the shape of the heap have been pro-

posed, including for example

ownership types: The concept of ownership (e.g. [Wre03]) can help structure

the heaps of object-oriented programs. Suppose O and P are objects at the

top level of a program. Informally, for O to own P means that O controls

access to P . For example, a Map object may use a binary tree representation,

and will own the tree nodes it uses internally; objects from “outside” have

no business holding pointers to these tree nodes, as they should only affect

the data structure by invoking methods of the Map object. Universe types

[DM05, CDE07, CDD+08], among others, have been developed for checking

ownership properties (mostly) statically.

regular model checking: Here program heaps are represented as finite words

over a finite alphabet [BHMV05]. The abstract values a are then finite state

automata (equivalently, regular expressions) over this alphabet; the interpreta-

tion γ(a) of such an automaton is the set of heaps whose encodings it accepts.

To obtain the abstract transfer function f(i)# for an instruction i, we construct

2.5. Survey of well-known abstraction domains 69

a finite state transducer which captures the effect of i (as a regular relation).

This transducer can then be composed with automata.

graph grammars: One can generalise from regular languages to more compli-

cated ones. [FM97], for example, uses a kind of context free graph grammar

to represent sets of heaps.

buffer domain: these provide a specialised representation to track the use of

string buffers in C (contiguous areas of memory, often null-terminated) [SK02].

2.5.4 Numerical domains

A variety of abstract domains are known for discovering linear relationships between

numerical variables x1, . . . , xn in a program:

� Interval analysis: [CC76, SW04] Here we associate an interval [ai, bi] with

each xi. We saw this on page 48 (albeit for a single variable). Thus, each

constraint has the form
n∧

i=1

ai ≤ xi ≤ bi

Interval analysis is fast and simple, and each constraint needs only O(n) space;

on the other hand, it does not discover dependencies between the different

variables.

� Polyhedral analysis: [CH78, BHRZ03] Here each constraint is a convex

polyhedron containing the values of the variables, i.e. it is a conjunction of

“half-spaces” each having the form c1x1 + . . . + cnxn ≤ a.

As in the interval case, this class of constraints is not closed under union, so

t produces the convex hull of its operands. Polyhedral analysis is much more

precise, capturing complex linear relationships between the variables, but is

much costlier to perform.

2.6. Abstraction domains are not independent 70

� Various numerical domains populate the space between intervals and convex

polyhedra, allowing a trade-off between precision and speed. For example,

[CC04] explores the use of octahedral constraints, which are polyhedra where

the half-spaces have the restricted form ±x1± . . .± xn ≤ a. Here t computes

the so-called octahedral hull.

In addition to finding linear constraints, some progress has been made with polyno-

mial constraints, [RCK04] being a particularly striking example. That work begins

by observing that the set of polynomials which are always zero at a given program

point (equivalently, the set of polynomial invariants at that point) forms an ideal

in the ring of polynomials, and therefore can be finitely represented as a Gröbner

basis. Furthermore, intersection of ideals can be computed using Gröbner bases, as

can the effect of instructions (for a restricted class of programs). Thus, Gröbner

bases representing sets of polynomials are used as the abstract values, and the f(i)#

and t functions are implemented using an existing library for manipulating such

bases. A widening operator is also given, which ensures convergence by bounding

the degree of invariants found.

As a final remark, we note that constraints such as polyhedra can be encoded into a

first order logic with arithmetic, but the specialised representations that have been

developed (e.g. the octahedron decision diagrams of [CC04]) and related specialised

algorithms argue against doing this in practice; treating e.g. octahedra simply as

first order formulae obscures the structure which makes the specialised algorithms

work. The same applies to many abstract domains, and this relates to benefit B2

in Section 1.2.2.

2.6 Abstraction domains are not independent

We conclude our background chapter with a discussion of the non-independence of

abstraction domains. We begin with an example of this non-independence.

2.6. Abstraction domains are not independent 71

Figure 2.11: The parity and sign abstraction lattices

2.6.1 An example of non-independence

Example 2.6.1. Figure 2.11 shows two abstraction domains for a program with a

single integer variable: the sign and parity domains, which we call Sgn and Par .

These domains record only the sign (resp. parity) that an integer variable has; their

concretisation functions are as follows:

Sgn.γ(pos) = {n ∈ Z : n > 0}

Sgn.γ(zero) = {0}

Sgn.γ(neg) = {n ∈ Z : n < 0}

Sgn.γ(>) = Z

Sgn.γ(⊥) = ∅

Par.γ(even) = {n ∈ Z : ∃m ∈ Z.n = 2m}

Par.γ(odd) = {n ∈ Z : ∃m ∈ Z.n = 2m + 1}

Par.γ(>) = Z

Par.γ(⊥) = ∅

Suppose we have the abstract values even and pos for these domains, respectively,

before execution of the instruction x := x - 1. Run by itself, the parity domain

produces

Par.f(x := x− 1)#(even) = odd

2.6. Abstraction domains are not independent 72

and, run by itself, the sign domain produces

Sgn.f(x := x− 1)#(pos) = >

because the sign of the new value of x cannot be determined.

But if we can combine the information from the two domains, rather than just

invoking their successor functions pointwise, we can do better: we know that if an

integer n is even and n > 0, then n ≥ 2. Therefore n− 1 must be positive and odd,

and the more precise pair of answers odd and pos is preferable.

2.6.2 Reduced product: a non-algorithmic description of

domain combination

The fact that more precise results can be obtained by combining the information in

two domains, rather than invoking their successor functions pointwise, is discussed

in [CC79]. That work describes a reduced product operator for combining domains.

Suppose we have two abstraction domains D and E . To get the reduced product

D⊗ E, we take the set of abstract values to be

(D⊗ E).A := D.A× E.A

i.e. an abstract value in the reduced product D ⊗ E is a pair consisting of one

abstract value from D and one from E . The transfer functions are then defined

by:

(D⊗E).f(i)#(a, b) := (D.α(X),E.α(X)) where X = f(i)(D.γ(a)∩E.γ(b))

(Recall that the abstraction function α, described on page 43, maps a set of states to

its unique best abstract representation, which in the setting used in [CC79] is guar-

2.6. Abstraction domains are not independent 73

anteed to exist.) Informally, the preceding definition says that we should concretise

the two abstract values, intersect their concretisations, apply the concrete transfer

function for the statement, and then choose the best abstract value to represent the

result in each of the domains.

By way of example, let us apply this definition to Example 2.6.1: we wish to calculate

the successor under x := x-1 of (pos, even) in the reduced product Sgn⊗Par i.e.

(Sgn⊗Par).f(x := x− 1)#(pos, even)

We first calculate (informally) the common subexpression

f(x := x− 1)(Sgn.γ(pos) ∩Par.γ(even))

= f(x := x− 1)({1, 2, 3, 4, 5, 6, . . .} ∩ {. . . ,−6,−4,−2, 0, 2, 4, 6, . . .})

= f(x := x− 1)({2, 4, 6, . . .})

= {1, 3, 5, . . .}

and then we use the reduced product definition:

(Sgn⊗Par).f(x := x− 1)#(pos, even)

= (Sgn.α({1, 3, 5, . . .}),Par.α({1, 3, 5, . . .})

= (pos, odd)

which gives the more precise answer as desired. In this sense, the reduced product is

the “right” way to combine domains. The reduced product operator can be iterated

to combine any number of domains.

Unfortunately, however, there is a big problem: the definition of reduced product

is non-algorithmic. This means that the reduced product does not tell us how to

implement domain combination at all: it describes non-algorithmically what the

combined domain looks like, but doesn’t give us a recipe for implementing it.

2.6. Abstraction domains are not independent 74

Figure 2.12: The reduced product is really a non-algorithmic description of ideal
domain combination; it is not an effective way of realising domain combination. De-
scribing something one would like, in this case domain combination, doesn’t produce
that thing (assuming one is not allowed to invoke the power of Santa Claus).

To see this, observe that the definition of the transfer functions for the product

domain is written in terms of operations involving sets of program states, such

as f(i) and ∩; the reason we introduced abstraction domains in the first place is

precisely that we cannot compute with such sets!

If we are labouring this point, that is only because the point seems not to be widely

understood: while carrying out this work we have frequently been asked “Why

don’t you just use the reduced product?” as if that settled the matter of domain

combination. But what does it mean to “use the reduced product” when it is

non-algorithmic? The reduced product can serve as a description of ideal domain

combination, but it doesn’t give us an effective way of realising that combination.

And as shown in Figure 2.123, merely describing something one would like doesn’t

produce that thing.

3The clipart Santa is from ToonWorkshop.com and the clipart boy is from Free-Clipart-
Pictures.net. Both are free for non-commercial use. The composition is my own.

2.6. Abstraction domains are not independent 75

> even odd ⊥
> (>,>) (>, odd) (>, even) ·

pos (>,>) (pos, odd) (>, even) ·
zero · (neg, odd) · ·
neg (neg, >) (neg, odd) (neg, even) ·
⊥ · · · (⊥,⊥)

Figure 2.13: Direct implementation of the abstract transfer function for x:=x-1 in
the product domain Sgn⊗Par. Where the entry for a pair is missing, this is because
that pair should never be encountered during the analysis.

2.6.3 Direct implementation of combined domains

Of course, there is nothing to stop us manually implementing abstract transfer

functions for a particular product domain: these can then combine the information

from the various domains and thus achieve greater precision as above. Figure 2.13

gives a direct implementation of the transfer function for x:=x-1 in the product

domain Sgn⊗Par.

In some cases, such as for the product of the sign and parity abstractions, we can

make a direct implementation that matches the precision of the reduced product.

In other cases this is impossible because the transfer functions described by the

reduced product are not computable; nevertheless a direct implementation can still

do better than pointwise application (and its design may still be informed by the

reduced product).

We mention in passing that in such product domains, we can expect to find pairs

that should never be generated by the transfer functions, and so can be ignored.

Here, for instance, the pair (zero, >) shouldn’t be generated, because zero is even;

the pair (zero, even) is always better and should be generated instead. Similarly

the pair (zero, odd) is inconsistent (has an empty concretisation); (⊥,⊥) should be

used instead.

Direct implementation of product domains has the following disadvantages:

� The interactions between domains can be subtle and hence a direct implemen-

2.6. Abstraction domains are not independent 76

tation can be time-consuming and difficult to get right.

� Direct implementation is non-modular: the implementor needs to understand

the structure of all the domains involved, of which there may in general be

any number.

� Direct implementations are less reusable: a direct implementation must be

redone each time we want to change the set of domains used.

As we explained in Section 1.2.2 of the Introduction, in this thesis we aim for clean

combination of separately-implemented domains, which makes implementation mod-

ular and thus more manageable (benefit B3), and means that different abstraction

domains can be mixed and matched (benefit B4).

2.6.4 Modular combination: the open product operator

When we began this work, the only thing we could find in the literature concerning

modular combination of domains was the open product operator [CCH00]4, which we

therefore took as our starting point. We now explain the open product in informal,

simplified terms.

The idea of the open product operator is that the domains can send each other

queries about program state. So one begins by fixing a set Query of queries about

program state.

The signature of each abstraction domain is then enlarged to include a computable

(Curried) “query-answering function”

answer : A → Query → {true, unknown}

the idea being that answer(a)(q) evaluates the query q on the set of states represented

by a, returning true if the query is true in all such states.

4We thank Dennis Dams for first pointing out to us the existence of the open product operator.

2.6. Abstraction domains are not independent 77

The “type” of the abstract transfer functions is changed too: instead of f(i)# : A →

A it becomes

f(i)# : A× (Query → {true, unknown}) → A

so that each abstract transfer function takes a query-answering function as an extra

argument, which it can then interrogate.

The abstract transfer functions on the product domain D⊗ E are defined by

(D⊗E).f(i)#(a, b) :=
(

D.f(i)#(a,E.answer(b)), E.f(i)#(b,D.answer(a))
)

In other words, the abstract transfer function from each of the domains is given the

ability to interrogate the query-answering function from the other domain.

If in Example 2.6.1 the query set Q included a query x 6= 1 then the sign analysis

could send this query to the parity analysis, and we would get the more precise

answer (pos, odd) as desired.

In [CCH00] the open product is applied to the detection of shallow properties of

Prolog programs, for the purposes of optimisation. In this thesis we rework the

idea in the context of verifying deep behavioural specifications of imperative heap-

manipulating programs.

2.6.5 Comparison: open product vs. reduced product

Like the direct implementation method, the open product operator can be used to

obtain transfer functions matching those described by the reduced product, in cases

where the latter are computable; in other cases it can be used as a “good” approxi-

mation of the reduced product, giving transfer functions that are more precise than

pointwise application. Unlike the direct implementation method, the open product

operator is modular.

2.7. Summary 78

The central issue, when discussing the open product and comparing it with the

reduced product, is the choice of query language Q. This is because the domains

being combined with the open product can share information only to the extent that

is allowed by the query language. If the query language chosen is not expressive

enough, then the domains will not be able to communicate the required information

to each other, and the transfer functions produced will be less precise than desired; in

particular, they will not match those of the reduced product even when the latter are

computable. In the extreme case, where one chooses the empty query language Q =

∅, the open product degenerates into pointwise application. On the other hand, as

one increases the expressiveness of the query language, the amount of programming

required to implement each domain increases, because more complicated queries

must be answered and issued. Thus the choice of query language will be a significant

consideration in this thesis.

2.7 Summary

In this chapter we introduced the problem of automatically verifying software, and

saw that this is difficult because most software programs are infinite-state. We

introduced the concepts of inductive verification and abstraction, which overcome

the infiniteness of the state space by using abstract states to represent sets of program

states. These two concepts are the basis for the automated software verification

systems in use today.

We then surveyed the abstraction domains currently in use, introducing among

others domains based on predicate abstraction, shape analysis and numerical con-

straints. We noted that each domain has its particular strengths and weaknesses, in

terms of: the kind of properties discovered, the precision of the analysis, the classes

of programs handled and the degree of automation. It is precisely because of these

varying strengths and weaknesses that we wish to provide for cooperation between

2.7. Summary 79

diverse verification techniques.

We next observed that running the various domains independently on the same

target program is not sufficient: if we are to obtain precise results, the domains

have to share their information. We explained that although there is an operator,

the reduced product, which gives a description of ideal domain combination, this

operator cannot be implemented; its definition is non-algorithmic and sometimes

describes transfer functions that are not computable.

Finally, we unearthed the open product operator from the literature, which allows

domains to exchange information by sending each other queries about the target

program’s states. The choice of the query language is important because the do-

mains being combined can cooperate only to the extent that is allowed by the query

language. Open products had been used for the shallow optimisation of Prolog pro-

grams, but not yet applied to verification. Unlike the reduced product, this operator

can be used for modular automatic combination. In the next chapter, we will use

the ideas of the open product to design and formalise a software verification sys-

tem in which the various verification techniques are implemented independently, but

automatically cooperate to verify target programs.

Chapter 3

Our approach: basic concepts and

algorithms

In this chapter we present and formalise the fundamentals of our new verification

method.

� We begin by describing and then formalising our choice of programming lan-

guage for our verification methods to target: we choose an idealised impera-

tive heap-manipulating language with non-deterministic choice and recursive

procedures, represented as CFGs. We define program states for this language,

and give operational semantics.

� Next we present a logic over program states, which will serve as the single

common language in which the analysis modules exchange information; we

use a first order logic extended with transitive closure.

� We then introduce the notion of an abstract model of a program, and

say what it means for such a model to be sound (with respect to the oper-

ational semantics). We show how sound models can be used to prove the

non-reachability of “bad” CFG nodes, and thus verify safety properties of

programs.

80

3.1. The target programming language 81

� We set out our notion of an analysis module, which is central to our work.

Analysis modules implement a common interface, which extends that of an

abstraction domain, adding functions for the propagation of information be-

tween modules. We state soundness conditions which analysis modules must

meet.

� We give an algorithm for verification, which is generic in that it works

with any sound analysis module. This algorithm is worklist-based and uses

summarisation to handle recursive procedure calls without requiring that pro-

cedures be annotated with pre- and post-conditions. We prove that the algo-

rithm terminates and produces correct results.

� Finally we define our combination operator �, which combines two anal-

ysis modules in such a way that they work together cooperatively. We show

that the combination of two sound analysis modules is again a sound analy-

sis module. Thus we can use our verification algorithm with any number of

cooperating analysis modules.

3.1 The target programming language

Our verification method targets an idealised imperative language with recursive

procedures. There are statements to allocate and manipulate heap objects, including

block allocation, allowing for linked data structures and arrays. The language also

includes non-deterministic choice. On the other hand the language does not include

facilities for exceptions, inheritance or concurrency, all of which introduce subtle

difficulties. Extending our techniques to account for these is well beyond the scope

of a (one-man) PhD project which produces an implementation, and thus is left as

future work. Also, allocation in our language is irreversible: once a block of memory

is allocated it can be neither garbage-collected nor explicitly deallocated.

3.1. The target programming language 82

We now present the language and its semantics. Before plunging into definitions,

here is a brief summary and explanation of what follows:

� Each program consists of declarations for a number of heap fields and then

a number of procedures. Procedure bodies are represented by control flow

graphs, as in Section 2.1.1, and may be recursive.

� Statements labelling edges of the CFGs must take very simple forms, such as

x := a + b.

� The language is essentially untyped: all variables hold integers, which can be

used either for arithmetic or as the addresses of heap objects.

� Each program state has the form (e, h, A) where e is the environment (mapping

local variables to their values), h is the heap (mapping address-field pairs to

their values) and A is the allocation set (the subset of heap addresses that are

allocated).

3.1.1 Syntax of programs

Fix once and for all countably infinite disjoint sets Vars, Fields and ProcNames. Also

fix once and for all a countably infinite set of control locations Locs with designated

distinct elements start, memerror, asserterror and terminated.

Definition 3.1.1. A control flow graph, or CFG, G = (N, E) consists of:

� A finite set of nodes N ⊆ Locs, which includes three special nodes, with the

following meanings:

– start: denotes that the procedure begins here

– memerror: represents a memory safety error

– asserterror: represents an assertion violation

3.1. The target programming language 83

and may also include the special node

– terminated: represents normal termination of the program

� An edge function E : N → DStmt, where the set DStmt of “directed state-

ments” contains the following kinds of elements (the comments on the right

show how these statements might be written in source code):

Skip : n // do nothing

VarCopy(u, v) : n u := v

AssignConst(u, k) : n u := k

Arith(u, v,⊗, v′) : n u := v ⊕ v′

FieldRead(u, v, f) : n u := v.f

FieldWrite(v, f, u) : n v.f := u

New(u, v) : n u := new array[0..v-1]

Call(u, π, [p1, . . . , pk]) : n u := π(p1, . . . , pk)

Return(v) return v

If(Φ) : n : n′ if (Φ) then ... else ...

Choice : n : n′ // nondeterministic choice

where u, v, v′ ∈ Vars, k ∈ Z, ⊗ ∈ {+,−,×}, π ∈ ProcNames, f ∈ Fields

and Φ is a guard formula belonging to the logic L {0,C} whose introduction we

defer until later.

The node component n ∈ N in the above statement forms indicates which

CFG node control passes to after execution of the statement. For the If and

Choice statements (which, strictly speaking, label hyperedges rather than

edges) there is a choice between two nodes, so these statement forms have two

components n, n′ ∈ N .

In a control flow graph there may be at most one node labelled with a Return

edge; this node is called the return point.

3.1. The target programming language 84

The special nodes other than start, i.e. memerror, asserterror and terminated

(if present), must each have a self-loop formed with a Skip-edge.

We will use appropriately named projection functions when dealing with tuples:

here the functions Nodes and Edges will project to the respective components of a

CFG.

The different types of edges encode different program statements; we work with

a minimal set of statements in order to reduce the number of cases our analysis

modules must handle. Thus, more complicated statements appearing in source

code, such as assignments with multiple arithmetic operators on the right hand

side, must be represented in the CFG by a sequence of simple statements, possibly

using temporary variables.

The nondeterministic choice statement Choice is used when we want to say that both

choices are possible. This can be used to model choices which are in the control of

the environment (for example user input), and to create “generators” when complex

data structures are needed as inputs (we shall see this in Chapter 5). For example,

to test a program that operates on acyclic linked lists, we would prepend to it a

call to a procedure which nondeterministically generates all possible acyclic linked

lists. (This approach is used by others e.g. in [BCC+07] and is related to the idea

in model checking that actions controlled by the environment are treated as non-

deterministic, to cover all possible cases.) In Chapter 6 we will see that, from the

point of view of falsifying a program, a Choice statement can be given a stronger

treatment than an If statement which we “cannot resolve”: for Choice both choices

are possible, whereas for an unresolved If exactly one choice happens but we cannot

tell which.

Definition 3.1.2. A procedure is a 4-tuple Π = (π, [p1, . . . , pj], [l1, . . . , lk], G) where:

π ∈ ProcNames is the procedure’s name, pi ∈ Vars are the formal parameters,

li ∈ Vars are its local variables (disjoint from the pis) and G is its control flow

3.1. The target programming language 85

graph. The functions Name, Formals, Locals and Graph will project to the respective

components of a procedure.

Definition 3.1.3. A program P is a pair ([f1, . . . , fm], [Π1, . . . , Πn]) where fi ∈

Fields are the heap fields used by that program, and Πi are its procedures (with Π1

taken to be the program’s “main” procedure, where execution starts), such that the

following “healthiness conditions” hold:

� Whenever a variable v ∈ Vars is mentioned by an edge in the CFG of procedure

Πi, v occurs either in Formals(Πi) or in Locals(Πi).

� For every edge FieldRead(u, v, f) : n and every edge FieldWrite(v, f, u) : n

occurring in the CFGs, f occurs in the list [f1, . . . , fm] of fields.

� For every edge Call(u, π, [p1, . . . , pk]) : n occurring in the CFGs, there exists

a procedure Πj in the program such that Name(Πj) = π and Formals(Πj) has

length k.

� For each procedure Πi in the program, the formal parameter list Formals(Πi)

does not contain duplicate elements.

� The program does not contain two distinct procedures Πi and Πj such that

Name(Πi) = Name(Πj).

� The main procedure Π1 has an empty parameter list, does not have a return

point, and there are no calls anywhere to the main procedure. The main

procedure includes the node terminated and no other procedure does.

Since procedures are uniquely named in programs, we shall afford ourselves the

liberty of writing π when we really mean “the procedure Π whose name is π”, and

vice versa. The respective projection functions will be called Procs and Fields.

Running example:

3.1. The target programming language 86

Figure 3.1: CFGs for our running example program.

To illustrate the above we show a simple example program, consisting of three

procedures called main, chooseNat and intSqrt. The CFGs are in Figure 3.1.

The chooseNat procedure nondeterministically returns all natural numbers, using

the Choice statement. The main procedure calls chooseNat and then uses the result

as the input to intSqrt, which calculates integer square root as in the previous

chapter. This arrangement ensures that intSqrt is checked on all its legal inputs.

Note the introduction of the variable one; this is because the statement x := x+1

used in the previous chapter is not in our minimal set of statements.

3.1. The target programming language 87

We can (if we really want) write these CFGs down formally, so that e.g. for chooseNat

we have GchooseNat = (N, E) where

N = {start, asserterror,memerror, 1, 2, 3}

and

E(start) = AssignConst(one, 1) : 1

E(1) = Choice : 2 : 3

E(2) = Arith(n, n, +, one) : 1

E(3) = Return(n)

The chooseNat procedure is then formally Π2 = (chooseNat, [], [n, one], GchooseNat)

(recall that the components are the name, formal parameter list, local variable list

and CFG respectively). Finally the whole program is

([], [

(main, [], [x, y], Gmain),

(chooseNat, [], [n, one], GchooseNat),

(intSqrt, [n], [x, one], GintSqrt)

])

(recall that the components are the list of heap fields used, and the list of proce-

dures).

3.1.2 Program states

We now define a notion of program state. This is the first step in giving semantics

to our programs.

3.1. The target programming language 88

Definition 3.1.4. An environment is a function Vars → Z. Let Env be the set of

all environments.

Definition 3.1.5. A heap is a function from Fields× Z to Z. We use 0 as the null

address (and will use 0 and null interchangeably from now on). Let Heap be the set

of all heaps.

Definition 3.1.6. An allocation set A is a subset A ⊆ Z>0 used to record which

heap locations have been allocated. Let AllocSet be the set of all allocation sets.

Definition 3.1.7. Finally, a program state is a triple (env, h, A) where env is an

environment, h is a heap and A is an allocation set. Let State be the set of all

program states. We name the respective projections Env, Heap and AllocSet.

We also define a special starting state, in which programs will begin their execution.

Definition 3.1.8. The starting state, denoted sstart, is the triple (env, h, A) where:

env and h have value 0 everywhere, and A = ∅.

3.1.3 Semantics of programs

Now we give operational semantics to our programs. In our background chapter

we did this by associating with each statement i a transfer function f(i) : State →

P(State). From this we then defined a transition relation semantics(P) ⊆ Sloc×Sloc

on located states, and finally the set of reachable located states reach(P).

Here, however, our formalisation is slightly different. Note that even though our

language has procedures, our states do not contain calls stacks; using explicit call

stacks would not be a good fit with procedure summarisation. Instead, we track the

call stack implicitly in the operational semantics.

Our semantics consists of two judgements, one for intraprocedural execution and

the other for procedure calls:

3.1. The target programming language 89

A. Intraprocedural execution judgement:

π, s0
p−→ l, s

This can be read as: “Execution can reach location l in procedure π, with

state s, and the state when the procedure was entered was s0”. (The role of p

is discussed shortly.)

B. Procedure call judgement:

π, s0 −→ l, s : π′, s′0

This can be read as: “Execution can reach location l in procedure π, with state

s, and the state when the procedure was entered was s0. Then the procedure

π′ is called, and after parameter passing the state is s′0”.

The coming definitions of these judgements will be mutually dependent. In one

direction, procedure calls happen when intraprocedural execution reaches a Call

edge: in this case we derive judgements of type B (procedure call) from those of

type A (intraprocedural execution). On the other hand, to start the called proce-

dure running or to restart the caller upon return, we derive judgements of type A

(intraprocedural execution) from those of type B (procedure call).

The value p in the intraprocedural execution judgement gives us an indication of

what the previous step in the execution was (but not a full trace), and will be useful

when we give the soundness conditions for abstract models (in Definition 3.3.2).

Each p and can take the following forms:

p = ε: This means we are at the beginning of a procedure, so there is no previous

step of execution.

3.1. The target programming language 90

p = l′, s′: This means the previous step of execution was the running of the in-

traprocedural statement at node l′ in the state s′.

p = l1, s1, π
′, s2, l3, s3: The means the previous step of execution was a call, at

location l1 and in state s1, to the procedure π′. The state upon entering

the called procedure (i.e. after parameter-passing) was s2, and then execution

flowed to location l3 and state s3 where it returned to the caller.

Figures 3.2, 3.3, 3.4 and 3.5 give the (named) derivation rules for the two judgements.

Strictly speaking, we mean to use the smallest pair of relations which is closed under

these rules.

The rules in Figures 3.2, 3.3 and 3.4 involve only judgement A (intraprocedural

execution) and thus we call them intraprocedural rules. The init rule is used to

start the program’s main procedure executing in the initial state. The other rules

each, in effect, extend execution one further step through the program. Consider

for example the varcopy rule:

π, s0
p−→ l, s

Edges(Graph(π))(l) = VarCopy(u, v) : l′

s = (e, h, A)

s′ = (e′, h, A)

e′ = e⊕ {u 7→ e(v)}

π, s0
l,s−→ l′, s′

Informally the premises mean:

1: Execution can reach location l in procedure π, with state s, and the state when

the procedure was entered was s0.

2: The CFG for procedure π contains an edge labelled VarCopy(u, v) from location

l to location l′.

3.1. The target programming language 91

3, 4, 5: The state s′ is the same as s except that the environment has been up-

dated at variable u, which is now mapped to the existing value of variable v.

(Throughout, ⊕ denotes the function override operator.)

The conclusion extends execution one step: execution can reach location l′ in π,

with new state s′ and the state when the procedure was entered was s0. The value

above the arrow records that the previous step of execution was the running of the

intraprocedural statement at node l in the state s.

These rules are mostly straightforward. Conditions on If edges are evaluated us-

ing JΦK which denotes (roughly) the set of program states in which Φ holds; this

is defined in the next section. The statements for potentially dangerous memory

accesses (field read and field write) have two rules, one for successful execution and

the other for failure. Failure occurs when the address accessed is not allocated. The

failure rules transfer execution straight to the special node memerror.

The block allocation statement New also has separate success and failure rules: al-

location fails if a memory block of non-positive length is requested. The rule for

successful allocation is nondeterministic: the block can be allocated anywhere it fits.

Figure 3.5 gives the rules for procedure calls and returns. These rules mix the two

judgement forms A (intraprocedural execution) and B (procedure call), which are

mutually dependent. According to the call-1 rule, local variables are initialised to

zero, and parameter passing is done in the call-by-value style. The procedure call

process is split into two stages, call-1 and call-2, because we do not use explicit

stacks: the calling context is recorded in the conclusion of the call-1 rule so that it

can be restored upon return.

It is worth remarking on the semantics of the nondeterministic Choice statement.

Whenever such a statement is encountered, both the rules choice-1 and choice-2 will

be applicable: the current execution will extend in two ways corresponding to the

two branches. Of course, in any particular execution exactly one of the choices is

3.1. The target programming language 92

init

π1, sstart ε−→ start, sstart

skip

π, s0
p−→ l, s

Edges(Graph(π))(l) = Skip : l′

π, s0
l,s−→ l′, s

varcopy

π, s0
p−→ l, s

Edges(Graph(π))(l) = VarCopy(u, v) : l′

s = (e, h, A)
s′ = (e′, h, A)

e′ = e⊕ {u 7→ e(v)}

π, s0
l,s−→ l′, s′

assignconst

π, s0
p−→ l, s

Edges(Graph(π))(l) = AssignConst(u, k) : l′

s = (e, h, A)
s′ = (e′, h, A)

e′ = e⊕ {u 7→ k}

π, s0
l,s−→ l′, s′

arith
π, s0

p−→ l, s
Edges(Graph(π))(l) = Arith(u, v1,⊗, v2) : l′

s = (e, h, A)
s′ = (e′, h, A)

e′ = e⊕ {u 7→ e(v1)⊗ e(v2)}

π, s0
l,s−→ l′, s′

fieldread-success

π, s0
p−→ l, s

Edges(Graph(π))(l) = FieldRead(u, v, f) : l′

s = (e, h, A)
s′ = (e′, h, A)

e(v) ∈ A
e′ = e⊕ {u 7→ h(f, e(v))}

π, s0
l,s−→ l′, s′

Figure 3.2: Derivation rules for intraprocedural execution. These rules involve only
judgement A (intraprocedural execution). Part 1 of 3.

3.1. The target programming language 93

fieldread-failure

π, s0
p−→ l, s

Edges(Graph(π))(l) = FieldRead(u, v, f) : l′

s = (e, h, A)
e(v) /∈ A

π, s0
l,s−→ memerror, s

fieldwrite-success

π, s0
p−→ l, s

Edges(Graph(π))(l) = FieldWrite(v, f, u) : l′

s = (e, h, A)
s′ = (e, h′, A)

e(v) ∈ A
h′ = h⊕ {(f, e(v)) 7→ e(u)}

π, s0
l,s−→ l′, s′

fieldwrite-failure

π, s0
p−→ l, s

Edges(Graph(π))(l) = FieldWrite(v, f, u) : l′

s = (e, h, A)
e(v) /∈ A

π, s0
l,s−→ memerror, s

new-success
π, s0

p−→ l, s
Edges(Graph(π))(l) = New(u, v) : l′

s = (e, h, A)
s′ = (e′, h, A′)

e(v) > 0
a > 0

{a, a + 1, . . . , a + e(v)− 1} ∩ A = ∅
A′ = A ∪ {a, a + 1, . . . , a + e(v)− 1}

e′ = e⊕ {u 7→ a}

π, s0
l,s−→ l′, s′

new-failure
π, s0

p−→ l, s
Edges(Graph(π))(l) = New(u, v) : l′

s = (e, h, A)
e(v) ≤ 0

π, s0
l,s−→ memerror, s

Figure 3.3: Derivation rules for intraprocedural execution. These rules involve only
judgement A (intraprocedural execution). Part 2 of 3.

3.1. The target programming language 94

choice-1
π, s0

p−→ l, s
Edges(Graph(π))(l) = Choice : l′1 : l′2

π, s0
l,s−→ l′1, s

choice-2
π, s0

p−→ l, s
Edges(Graph(π))(l) = Choice : l′1 : l′2

π, s0
l,s−→ l′2, s

if-true
π, s0

p−→ l, s
Edges(Graph(π))(l) = If(Φ) : l′1 : l′2

(s0, s) ∈ JΦK{0,C}

π, s0
l,s−→ l′1, s

if-false
π, s0

p−→ l, s
Edges(Graph(π))(l) = If(Φ) : l′1 : l′2

(s0, s) /∈ JΦK{0,C}

π, s0
l,s−→ l′2, s

Figure 3.4: Derivation rules for intraprocedural execution. These rules involve only
judgement A (intraprocedural execution). Part 3 of 3.

3.1. The target programming language 95

call-1
π, s0

p−→ l, s
Edges(Graph(π))(l) = Call(u, π′, [p1, . . . , pk]) : l′

s = (e, h, A)
s′ = (e′, h, A)

[f1, . . . , fj] = Formals (π′)

e′ (x) =

{
e (pi) if x is fi

0 otherwise

π, s0 −→ l, s : π′, s′

call-2
π, s0 −→ l, s : π′, s′

π′, s′
ε−→ start, s′

return
π, s0 −→ l1, s1 : π′, s2

π′, s2
p−→ l3, s3

Edges(Graph(π))(l1) = Call(u, π′, [p1, . . . , pk]) : lc
Edges(Graph(π′))(l3) = Return(v)

s1 = (e1, h1, A1)
s3 = (e3, h3, A3)
sc = (ec, h3, A3)

ec = e1 ⊕ {u 7→ e3 (v)}

π, s0
l1,s1,π′,s2,l3,s3−−−−−−−−→ lc, sc

Figure 3.5: Derivation rules for procedure calls and returns. These rules mix the
two judgement forms A (intraprocedural execution) and B (procedure call) which
are mutually dependent.

3.2. Our logic for program states 96

taken, but for both branches there exists an execution which follows that branch.

Consider for instance the procedure chooseNat in Figure 3.1. In any particular

execution this procedure returns a single natural number; but for every number

n ∈ N there exists an execution which returns n. This is what we meant when we

said that “chooseNat returns all natural numbers”.

Remark 3.1.9. Using this semantics, a CFG node l in a procedure π is reachable

iff there exist states s0 and s such that (for some p) π, s0
p−→ l, s.

3.2 Our logic for program states

In this section we present the logic L which is used to describe program states. In

fact, L will do triple duty, being used to express:

� guards for alternation and iteration statements in programs,

� assertions about desired program behaviour and

� information exchanged between cooperating analysis modules.

But before we give syntax and semantics for L , we must introduce the idea of time

indices.

3.2.1 The need for time indices

If we are to use our logic to describe the effect of a program statement, we will need

a way of relating the program states before and after the statement’s execution. A

standard way to do this (as in e.g. [Mor94]) is to add a subscript, here 1, to variables

which should be evaluated in the “before” state. Hence, for example, if the variables

3.2. Our logic for program states 97

Figure 3.6: An illustration of the roles of the time indices 0, 1 and C when considering
the execution of an intraprocedural statement.

3.2. Our logic for program states 98

in scope are x and y, the statement x := x+1 can be described by the formula

x = x1 + 1 ∧ y = y1

We will also need to write “frame conditions” which say that, for instance, certain

variables have not changed since the beginning of a procedure’s execution. We

decorate variables with the subscript 0 to indicate that they should be evaluated in

the program state as it was on entry to the current procedure. For instance

n = n0

says that the variable n has not changed since entry to the current procedure. Thus

our 0 subscript is similar to the old operator found in JML [LBR06] and Spec#

[BLS05]).

Formally, we call such subscripts time indices and define the set of them to be

Time := {0, 1, 2, 3,C}

We call C the “current time”, 1 the “previous time” and 0 the “starting time”.

Figure 3.6 shows how this scheme works for an intraprocedural statement. As a

shorthand, unadorned variables will refer to the current time C. We will use variables

j and k to range over time indices. (For procedure calls and returns, two further

indices 2 and 3 are needed; this will be described in Subsection 4.4.1.)

3.2.2 Syntax and semantics of our logic L

We now give syntax and semantics for our logic L ; we have chosen to make L a

first order logic with transitive closure, or FO(TC). This important design decision

will be discussed later (Section 3.7) The syntax of the logic is given in Figure 3.7.

3.2. Our logic for program states 99

term ::= vj (program variable)
| X (logical variable)
| n (integer constant)
| term ⊗ term (arithmetic)
| fj (term) (field lookup)

literal ::= term = term | term < term | term ≤ term | allocdj(term)

Φ ::= literal | True | ¬Φ | Φ ∧ Φ | Φ ∨ Φ | Φ → Φ | Φ ↔ Φ
| ∃X Φ | ∀X Φ | TC[A,B] [Φ(A, B)] (term, term)

Figure 3.7: Grammar of the logic L which describes program states. L is a first
order logic with a transitive closure operator TC. Here j ∈ Time, v ∈ Vars and
f ∈ Fields. X, A and B are logical variables (i.e. variables not appearing in the
program) which range over integer values.

I(s0, s1, s2, s3, sC, ρ, t) =



envj(v) if t is vj (program variable)

ρ(X) if t is X (logical variable)

n if t is n (integer constant)

I(s0, s1, s2, s3, sC, ρ, t′)

⊗I(s0, s1, s2, s3, sC, ρ, t′′)
if t is t′ ⊗ t′′ (arithmetic)

hj(f, I(s0, s1, s2, s3, sC, ρ, t′)) if t is fj(t
′) (field lookup)

where each sj is (envj, hj, Aj)

Figure 3.8: Interpretation of terms in our logic L .

3.2. Our logic for program states 100

Semantics of formulae: (s0, s1, s2, s3, sC) ∈:

Jt = t′Kρ iff I(s0, s1, s2, s3, sC, ρ, t) = I(s0, s1, s2, s3, sC, ρ, t′)

Jt < t′Kρ iff I(s0, s1, s2, s3, sC, ρ, t) < I(s0, s1, s2, s3, sC, ρ, t′)

Jt ≤ t′Kρ iff I(s0, s1, s2, s3, sC, ρ, t) ≤ I(s0, s1, s2, s3, sC, ρ, t′)

Jallocdj(t)Kρ iff I(s0, s1, s2, s3, sC, ρ, t) ∈ Aj

J¬ΦKρ iff (s0, s1, s2, s3, sC) /∈ JΦKρ

JΦ ∧ Φ′Kρ iff (s0, s1, s2, s3, sC) ∈ JΦKρ ∩ JΦ′Kρ

JΦ ∨ Φ′Kρ iff (s0, s1, s2, s3, sC) ∈ JΦKρ ∪ JΦ′Kρ

JΦ → Φ′Kρ iff (s0, s1, s2, s3, sC) /∈ JΦKρ or (s0, s1, s2, s3, sC) ∈ JΦ′Kρ

JΦ ↔ Φ′Kρ iff (s0, s1, s2, s3, sC) ∈ JΦKρ ∩ JΦ′Kρ

or (s0, s1, s2, s3, sC) /∈ JΦKρ ∪ JΦ′Kρ

J∃XΦKρ iff ∃n ∈ Z s.t. (s0, s1, s2, s3, sC) ∈ JΦKρ⊕{X 7→n}

J∀XΦKρ iff ∀n ∈ Z, (s0, s1, s2, s3, sC) ∈ JΦKρ⊕{X 7→n}

JTC[A,B] [Φ(A, B)] (t, t′)Kρ iff

for some n1, . . . , nk ∈ Z we have:
I(s0, s1, s2, s3, sC, ρ, t) = n1,
I(s0, s1, s2, s3, sC, ρ, t′) = nk

and for j = 1 . . . k − 1,
(s0, s1, s2, s3, sC) ∈ JΦKρ⊕{A7→nj ,B 7→nj+1}

where each sj is (envj, hj, Aj)

Figure 3.9: Semantics of the logic L which describes program states. Formulae
of L are interpreted over five states, which are intended as “snapshots” of the
program’s execution, taken at different times. Hence, formulae can describe the
effects of atomic statements, and frame conditions. The operator ⊕ denotes function
override, and the term interpretation function I is from Figure 3.8.

3.2. Our logic for program states 101

Variables, fields and the allocd(x) predicate, which expresses that memory address x

has been allocated to a heap object, can all be decorated with a time index j ∈ Time.

Quantification is allowed only over (integer-valued) logical variables which are kept

separate from program variables and capitalised. Recall that, informally, the tran-

sitive closure operator TC works as follows: TC[A,B] [Φ(A, B)] (t, t′) says that from

t we can “reach” t′ via some path of intermediate points, such that for each pair of

successive points (A, B) along the path we have Φ(A, B).

Figures 3.8 and 3.9 define the logic’s semantics: to account for the time indices,

formulae are interpreted in a 5-tuple of states, with the five states corresponding to

the five time indices. Figure 3.8 shows how to interpret terms to their values, and

then Figure 3.9 defines J−Kρ as a subset of State5. The expression (s0, s1, s2, s3, sC) ∈

JΦKρ means that Φ is true of the 5-tuple of states (s0, s1, s2, s3, sC) where ρ gives

values to the logical variables. When Φ contains no free variables we omit ρ.

Sometimes we will be handling formulae containing only current variables, fields

and allocation predicates. We call this sublogic L {C}. In this case the truth value

of the formula depends only on the current state, and we use a unary semantics

J−K{C} ⊆ State. More generally, for any subset T ⊆ Time of cardinality k, we can

easily get a k-ary semantics J−KT ⊆ Statek for formulae whose time indices come

only from T ; we call the sublogic of such formulae L T .

Finally we have notation for “time substitution”: by Φ[j\k] (where j, k ∈ Time) we

denote the result of substituting in Φ the time index k for each occurrence of the

time index j.

3.3. Abstract models of programs 102

3.3 Abstract models of programs

3.3.1 Syntactic definition

We now introduce, syntactically, the kind of models we will build from input pro-

grams.

From now on, we are going to assume that all our domains have a power set structure.

Working with power sets simplifies things very much: it allows us to work at the

level of individual elements rather than at the level of sets of elements:

“When the lattice is the power set of some basic finite set D [...], the

algorithm can be modified to propagate elements of D instead of elements

of 2D.” [RRL99]

Bear in mind that our task here is to perform initial exploration of how to build

a verification system that combines analysis modules, so we want to keep things

simple initially. The process of extracting counterexample paths is also simplified,

as is that of handling procedures:

“By restricting domains to be power sets [...], we are able to efficiently

create simple representations of functions that summarize the effects of

procedures (by supporting efficient lookup operations from input facts

to output facts).” [RHS95]

Our choice to stick to power set domains is implicit in the following definition. This

decision doesn’t mean we can’t use other domains, but it may mean we lose some of

their useful structure by treating them as power set domains; this will be the case

with our three-valued shape graph domain.

Definition 3.3.1. Given a program P = ([f1, . . . , fm], [Π1, . . . , Πn]), an abstract

model of P is a tuple Q = (T, γ, N,Edges,CallEdges,ReturnEdges) where:

3.3. Abstract models of programs 103

� T is a set of abstract values

� γ : T → P(State× State) is a concretisation function

� N is the set of nodes of the abstract model, where each node is a triple (π, l, a)

such that: π names a procedure Π in P , l ∈ Nodes(Graph(Π)) i.e. l is a control

location in procedure Π, and a ∈ T i.e. a is an abstract value

� Edges,CallEdges,ReturnEdges are transition relations i.e. subsets of N × N ,

whose elements we refer to as ordinary edges, call edges and return edges re-

spectively

In contrast to Chapter 2, our abstract values now abstract pairs of states rather

than single states. This is because we want to track frame conditions; for example

we might want n = n0 to be an abstraction predicate. The first state of the pair is

the state at procedure entry, and the second is the current state.

Running example:

By way of example, we show in Figure 3.10 a model for our earlier program, built

using a sign analysis. Here the abstract values (that is, elements of T) are finite

partial maps from variables to signs:

Tsign := Vars ⇀fin {pos, neg, zero}

The entries in the map are read conjunctively, so that each variable must have the

sign indicated. Also, the signs refer to the current values of the variables; the starting

state (that on entry to the current procedure) is left unconstrained. Formally we

define first a helper function γ̂:

γ̂(v, pos) := {(e, h, A) | e(v) > 0}

γ̂(v, neg) := {(e, h, A) | e(v) < 0}

γ̂(v, zero) := {(e, h, A) | e(v) = 0}

3.3. Abstract models of programs 104

Figure 3.10: An example of an abstract model, built from a sign analysis. The
relations Edges, CallEdges and ReturnEdges are shown in green, red and blue re-
spectively. (This graph is hand-edited for better layout, though our implementation
can generate similar graphs; see Chapter 4.)

3.3. Abstract models of programs 105

and then the concretisation function γ:

γsign(M) := State×
⋂

v∈dom(M)

γ̂(v, M(v))

Here if the domain of M is empty, the intersection is interpreted as all of State.

3.3.2 Sound abstract models

Of course, as stated back in Chapter 1, we can only use abstract models for veri-

fication if there is an appropriate relationship between the abstract model and the

original program. In the development of Chapter 2 this relationship was provided by

the conditions in Remark 2.3.5; another such relationship is simulation (e.g. [BG03]).

We now define what it means for an abstract model to be a sound model of the

original program. Our definition is non-standard in that it ensures that procedure

calls and returns are correctly treated, and accounts for the need to be able to refer

to the program’s state on entry to the current procedure (i.e. at the “starting” time).

Definition 3.3.2. Given a program P and an abstract model Q of P as above, we

say that Q is sound if the following conditions are satisfied:

sound-init There exists a ∈ T such that (π1, start, a) ∈ N and (sstart, sstart) ∈

γ(a).

sound-intra If π, s0
l,s−→ l′, s′ with (π, l, a) ∈ N and (s0, s) ∈ γ(a), then there

exists a′ ∈ T such that (π, l′, a′) ∈ N , (s0, s
′) ∈ γ(a′) and ((π, l, a), (π, l′, a′)) ∈

Edges.

sound-call If π, s0 −→ l, s : π′, s′ with (π, l, a) ∈ N and (s0, s) ∈ γ(a) then

there exists a′ ∈ T such that (π′, start, a′) ∈ N , (s′, s′) ∈ γ(a′) and also

((π, l, a), (π′, start, a′)) ∈ CallEdges.

3.3. Abstract models of programs 106

sound-return If π, s0
l1,s1,π̄,s2,l3,s3−−−−−−−−→ l′, s′ and N has elements (π, l1, a1),

(π̄, start, a2) and (π̄, l3, a3) such that

(s0, s1) ∈ γ(a1)

(s2, s3) ∈ γ(a3)

((π, l1, a1), (π̄, start, a2)) ∈ CallEdges

((π̄, start, a2), (π̄, l3, a3)) ∈ Edges∗

then N also contains an element (π, l′, a′) such that

(s0, s
′) ∈ γ(a′)

((π̄, l3, a), (π, l′, a′)) ∈ ReturnEdges

((π, l1, a1), (π, l′, a′)) ∈ Edges

(Here and henceforth, R∗ denotes the reflexive transitive closure of the binary rela-

tion R.)

Next we prove a convenient property of sound abstract models; this is a stepping

stone which will allow us to justify our use of sound models for verification.

Theorem 3.3.3. A consequence of soundness Given a program P and a sound

abstract model Q of P as above, the following condition holds:

sound-coverage If π, s0
p−→ l, s then:

1. N contains at least one element (π, start, a0) such that (s0, s0) ∈ γ(a0),

and

2. for each such element, N contains an element (π, l, a) such that (s0, s) ∈

γ(a) and ((π, start, a0), (π, l, a)) ∈ Edges∗.

3.3. Abstract models of programs 107

(The subtlety here is that in general distinct abstract states need not have disjoint

concretisations, and thus the concrete starting state s0 might lie within the concreti-

sation of more than one abstract node; from all such abstract nodes there must be

a path to a node representing s.)

Proof: This property talks about paths of edges through the model, so it is not

surprising that the proof is by induction. We use the following condition:

ind-coverage(k) If π, s0
p−→ l, s can be derived in k steps or fewer, then:

1. N contains at least one element (π, start, a0) such that (s0, s0) ∈ γ(a0),

and

2. for each such element, N contains an element (π, l, a) such that (s0, s) ∈

γ(a) and ((π, start, a0), (π, l, a)) ∈ Edges∗.

The base case k = 0 is trivial: there are no derivations of zero steps. Now we

do the inductive case: assume ind-coverage(k) and prove ind-coverage(k + 1). So

let π, s0
p−→ l′, s′ be derivable in k + 1 steps or fewer. We split our analysis into

cases depending on which rule was used to complete the derivation: there are four

subcases depending on the form of p.

� p = l, s: Here one of the intraprocedural rules was used to complete the

derivation, and from its premises we have π, s0
q−→ l, s derivable in k steps or

fewer.

Applying part 1. of ind-coverage(k) to this, there exists an element (π, start, a0)

of N such that (s0, s0) ∈ γ(a0); this meets part 1. of ind-coverage(k + 1).

For any such element, part 2. of ind-coverage(k) gives us another element

(π, l, a) of N such that (s0, s) ∈ γ(a) and ((π, start, a0), (π, l, a)) ∈ Edges∗.

Applying sound-intra to π, s0
l,s−→ l′, s′, we see that N contains an element

(π, l′, a′) such that (s0, s
′) ∈ γ(a′) and ((π, l, a), (π, l′, a′)) ∈ Edges, whence

((π, start, a0), (π, l′, a′)) ∈ Edges∗ and part 2. of ind-coverage(k + 1) is met.

3.3. Abstract models of programs 108

� p = ε and π = π1: Here the init rule was used to complete the derivation,

and the conclusion has the form π1, s
start ε−→ start, sstart i.e. l′ = start and

s′ = s0 = sstart.

Using sound-init, there exists a0 ∈ T such that (π1, start, a0) ∈ N and

(sstart, sstart) ∈ γ(a0), i.e. (s0, s0) ∈ γ(a0), meeting part 1. of ind-coverage(k+1).

For each such element, putting a′ = a0 we see that N contains an element

(π, l′, a′) such that (s0, s
′) ∈ γ(a′). Also ((π, start, a0), (π, l′, a′)) ∈ Edges∗

simplifies to ((π, start, a0), (π, start, a0)) ∈ Edges∗ which is trivially true.

� p = ε and π 6= π1: Here the call-2 rule was used to complete the derivation,

and the conclusion is of the form π, s′
ε−→ start, s′, i.e. we have l′ = start and

s0 = s′.

From the premise of call-2 we also have that π̂, ŝ0 −→ l̂, ŝ : π, s′ (using hats for

the caller procedure), and this must be derivable in k steps or fewer. This can

only be obtained using the call-1 rule, so from the premises of call-1 we have

π̂, ŝ0
p̂−→ l̂, ŝ which must be derivable in k − 1 or fewer steps.

Applying ind-coverage(k) to this, we see that N contains an element (π̂, l̂, a)

such that (ŝ0, ŝ) ∈ γ(a).

Applying sound-call to this, we see that N also contains an element (π, start, a0)

such that (s′, s′) ∈ γ(a0); this meets part 1. of ind-coverage(k + 1).

For each such element, putting a′ = a0 we see that N contains an element

(π, l′, a′) such that (s0, s
′) ∈ γ(a′). Also ((π, start, a0), (π, l′, a′)) ∈ Edges∗

simplifies to ((π, start, a0), (π, start, a0)) ∈ Edges∗ which is trivially true.

� p = l1, s1, π̄, s2, l3, s3: Here the return rule was used to complete the derivation,

and the conclusion is of the form

π, s0
l1,s1,π̄,s2,l3,s3−−−−−−−−→ l′, s′

From the premises of the return rule, we have π̄, s2
p̄−→ l3, s3 and π, s0 −→ l1, s1 :

3.3. Abstract models of programs 109

π̄, s2 which must each be derivable in k − 1 or fewer steps. The only way to

obtain the latter is by call-1, and therefore π, s0
q−→ l1, s1 is derivable in k − 2

or fewer steps.

Applying ind-coverage(k) part 1. to π, s0
q−→ l1, s1, we see that N contains

an elements (π, start, a0) such that (s0, s0) ∈ γ(a0), meeting part 1. of ind-

coverage(k + 1).

To show ind-coverage(k + 1) part 2., consider any (π, start, a0) ∈ N such that

(s0, s0) ∈ γ(a0). By ind-coverage(k) part 2., there exists (π, l1, a1) ∈ N such

that (s0, s1) ∈ γ(a1) and (π, start, a0), (π, l1, a1)) ∈ Edges∗.

Applying sound-call, we see that N also contains an element (π̄, start, a2) such

that (s2, s2) ∈ γ(a2) and ((π, l1, a1), (π̄, start, a2)) ∈ CallEdges.

This is where the quantification implicit in part 2. of ind-coverage is necessary

to make the proof go through. Applying ind-coverage(k) to π̄, s2
p̄−→ l3, s3,

we find that N contains an element (π̄, l3, a3) such that (s2, s3) ∈ γ(a3) and

((π̄, start, a2), (π̄, l3, a3)) ∈ Edges∗.

We have now assembled everything needed to invoke sound-return, which tells

us that N also contains an element (π, l′, a′) such that (s0, s
′) ∈ γ(a′) and

((π, l1, a1), (π, l′, a′)) ∈ Edges. To finish we put together ((π, l1, a1), (π, l′, a′)) ∈

Edges and (π, start, a0), (π, l1, a1)) ∈ Edges∗ and conclude that

(π, start, a0), (π, l′, a′)) ∈ Edges∗. This meets part 2. of ind-coverage(k + 1).

Thus, ind-coverage(k) holds for all k. To finish, simply note that because all deriva-

tions are finite, sound-coverage follows.

3.3.3 Using sound models to verify programs

As we explained in Subsection 2.1.2, we will transform our verification problems into

reachability problems. Hence, given a set of “bad” locations B ⊆ ProcNames×Locs,

3.4. Analysis modules 110

we will then want to determine whether any of the bad locations are reachable, i.e.

whether

∃(π, l) ∈ B ∃s0, s, p π, s0
p−→ l, s

The following Criterion shows how to use a sound model to falsify such a condition

(and thus verify the program).

Criterion 3.3.4. Given a program P and a sound abstract model Q of P as above,

and a set of bad nodes B, then

(1.) there do not exist a ∈ T, (π, l) ∈ B such that (π, l, a) ∈ N

is sufficient to falsify

(2.) ∃(π, l) ∈ B ∃s0, s, p π, s0
p−→ l, s

i.e. is sufficient to show that no bad nodes are reached.

Proof: We shall assume (2.) and prove the negation of (1.). From (2.) we see

that there exists (π, l) ∈ B and s0, s, p such that π, s0
p−→ l, s. By the soundness

of Q and using Theorem 3.3.3, there exists a ∈ T such that (π, l, a) ∈ N and

(s0, s) ∈ γ(a).

Typically we will be interested in the locations used to model memory errors and

assertion violations, i.e. we will take B := {π1, . . . , πn} × {memerror, asserterror}.

3.4 Analysis modules

In this subsection we present and discuss the notion of an analysis module which is

central to our work. Intuitively an analysis module is a program analysis tool which

has been appropriately wrapped for integration into our system.

3.4. Analysis modules 111

3.4.1 Our interface for analysis modules

Definition 3.4.1. The Stmt type. The type Stmt has elements of the following

forms:

� Skip

� VarCopy(u, v)

� AssignConst(u, k)

� Arith(u, v1,⊗, v2)

� FieldRead(u, v, f)

� FieldWrite(v, f, u)

� New(u, v)

Values of Stmt are like the edge labels in CFGs, except that (for reasons explained

shortly) there are no cases for If, Choice, Call or Return.

Definition 3.4.2. An analysis module M is a software module implementing the

following interface:

� finite datatype T

� function share : T × Stmt× ProcNames → L {0,1,C}

� function succ : T × Stmt× ProcNames×L {0,1,C} → P(T)

� function succC : T × ProcNames× ProcNames× Vars list → P(T)

� function succR : T×T×ProcNames×ProcNames×Vars×Vars×Vars list →

P(T)

� function init : {·} → P(T)

3.4. Analysis modules 112

and equipped with a notional (i.e. not actually implemented) concretisation function

� function γ : T → P(State× State)

(Here and henceforth, the type “X list” is inhabited by finite lists of values of type

X. The ‘list’ type constructor has higher binding power than does the product

operator ×.)

(The If and Choice cases are missing from Stmt because, as we will see, these are

translated into suitable invocations of succ with Skip; similarly Call and Return

are missing because they are handled by the succC and succR functions instead.)

When working with several modules, we prevent confusion by referring to M ’s

components as M.share, M.succ and so on. The role of each interface component is

as follows.

� The datatype T is the type of the abstract values used by the module.

� The (notional) concretisation function γ gives meaning to the abstract values

(elements of T), as it did in Subsection 2.3.2.

The only difference is that, as mentioned previously, our abstract values now

abstract pairs of states rather than single states, to allow for frame conditions

etc.. The first state of the pair is the state at procedure entry, and the second

is the current state.

� Calling share(a, s, π) asks the module to share an L -formula Φ which is valid

in all concrete state pairs represented by the abstract state a (i.e. Φ is entailed

by a) and might be useful to other modules when computing successors for

the statement s in procedure π.

� Calling succ(a, s, π, Φ) computes the set of abstract states the program may

reach by executing the statement s in a concrete state represented by a and

3.4. Analysis modules 113

satisfying the formula Φ. In practice Φ will be the information gathered from

the other modules by share. (Thus succ is similar to the abstract transfer

functions f# of Subsection 2.3.2 but with the formula Φ as an extra argument.)

� The function succC generates successors for call statements, as succ does for

ordinary statements. In the invocation succC(a, π, π′, [a1, . . . , ak]), a is the

abstract value at the call point, π names the calling procedure, π′ names the

called procedure and [a1, . . . , ak] are the actual parameters.

� Returning from a procedure call is treated by a similar function succR, except

that two abstract values must be supplied instead of one: one describing the

callee’s state at the return point, and one describing the caller’s state when

the call was made. Roughly, constraints on the heap after the return are taken

from the first, whereas constraints on the caller’s local variables are taken from

the second.

In the invocation succR(a, a′, π, π′, x, r, [a1, . . . , ak]), π and π′ name respectively

the caller and called procedures, [a1, . . . , ak] are the call’s actual parameters,

a is the abstract value at the point where the call was made, a′ is the abstract

value at the return point, r is the variable returned by the called procedure,

and x is the variable in the caller waiting to receive the result.

� init is used to start off the analysis, giving a set of abstract values to represent

the initial state of the program.

Note that modules also have access to the whole program that is being analysed;

this can be thought of as an implicit parameter to all the functions outlined above.

3.4. Analysis modules 114

3.4.2 An example analysis module: multi-variable sign anal-

ysis

We now construct in detail an example analysis module, implementing a multi-

variable sign analysis. This analysis module can be used to automatically construct

the model in Figure 3.10 (page 104). We will not go into the same level of detail for

our other analysis modules, but wish to include a fully specified example module,

and give the reader an idea of what is involved in writing such a module.

Like most of the analyses we will deal with, the multi-variable sign analysis is “con-

figurable” or “tunable”: we can choose, for each procedure in our target program,

which variables we would like to track signs for, and which we would not. Thus

formally instead of defining an analysis module compsigns , we define an indexed

family of analysis modules, compsigns 〈∆〉 , parametrised by this choice, which

we represent as a mapping

∆ : Procs(P) → Vars list

Here the abstract values (elements of T) are finite partial maps from variables to

signs:

T := {M ∈ Vars ⇀fin {pos, neg, zero} | dom(M) = ∆(π) for some π ∈ Procs(P)}

The concretisation function γ is the same as on page 105. The definition of the

information-sharing function share is simple (again using a helper function):

sharehelper(v, pos) := v1 > 0

sharehelper(v, neg) := v1 < 0

sharehelper(v, zero) := v1 = 0

3.4. Analysis modules 115

share(M, s, π) :=
∧

v∈dom(M)

sharehelper(v, M(v))

For this sign analysis, the shared formula entirely captures the abstract value M ∈ T

but this will not always be possible or desirable: generally any formula entailed by

the abstract value is enough. The only subtlety is that each variable v is encoded

with the corresponding “previous time” variable v1, to indicate that we are describing

the state before execution of the upcoming statement.

To implement the successor function succ, we need a way to reason about how the

possible signs of variables are affected by the various forms of statements. We do

this in a compositional way: for each arithmetic operator

⊗ : Z× Z → Z

we provide, overloading the symbol ⊗, an abstract operator

⊗ : {pos, neg, zero, any} × {pos, neg, zero, any} → {pos, neg, zero, any}

Tables for these operators are found in Appendix A.2. The sign of an expression is

then safely approximated by “lifting” M ∈ T from Vars to whole terms, as follows:

M(vj) = if j 6= 1 or v /∈ dom(M) then any else M(v)

M(X) = any

M(n) = if n > 0 then pos else if n = 0 then zero else neg

M(t⊗ t′) = M(t)⊗M(t′)

M(fj(t)) = any

As can be seen, we make no attempt to model heap fields, and treat the result of

all heap reads as ‘any’. The same is done for logical variables. For convenience we

3.4. Analysis modules 116

also overload the symbol ⊕, defining a helper function

⊕ : T × Vars× {pos, neg, zero, any} → P(T)

which, roughly, abstracts function overriding:

⊕(M, v, σ) =



{M} if v /∈ dom(M)

{M ⊕ {v 7→ σ}} if v ∈ dom(M) and σ 6= any
M ⊕ {v 7→ pos},

M ⊕ {v 7→ zero},

M ⊕ {v 7→ neg}


if v ∈ dom(M) and σ = any

We are now in a position to have a first go at defining the successor function:

succ′(M, Skip, π, Φ) = {M}

succ′(M, VarCopy(u, v), π, Φ) = ⊕(M, u, M(v))

succ′(M, AssignConst(u, k), π, Φ) = ⊕(M, u, M(k))

succ′(M, Arith(u, v1,⊗, v2), π, Φ) = ⊕(M, u, M(v1 ⊗ v2))

succ′(M, FieldRead(u, v, f), π, Φ) = ⊕(M, u, any)

succ′(M, FieldWrite(v, f, u), π, Φ) = {M}

succ′(M, New(u, v), π, Φ) = ⊕(M, u, pos)

When the new sign of a variable cannot be determined i.e. evaluates to ‘any’, the

module branches, producing three new states corresponding to the three possible

signs pos, neg and zero of the variable. This branching occurs in the definition of

the abstract ⊕.

This successor function is fine as far as it goes, and soundly treats statements.

What succ′ doesn’t do, however, is make any use of the parameter Φ, that is, the

extra information provided by other analysis modules or by guards from loops or

3.4. Analysis modules 117

conditionals in the program. In particular, if we see that Φ contradicts the sign

information held in M , we would like the module to return an empty set of successors.

To enable this, we define a function check such that check(Φ, M) evaluates a formula

Φ according to the sign information in M . Then succ is defined as follows:

succ(M, s, π, Φ) :=


∅ if check(Φ, M) = false

succ′(M, s, π, Φ) otherwise

To obtain check, we give a three-valued Kleene-style semantics to formulae of L ,

taking an M ∈ T as our model. (Appendix A.1 gives an introduction to three-valued

logic for readers unfamiliar with it.) This approach accounts very naturally for the

fact that M contains only limited information about the program state, and allows

us to make the most of the information we do have: even if a formula Φ contains a

subformula on which M can shed no light, we may still be able to obtain a definite

truth value for Φ.

In fact, the use of a three-valued semantics to soundly evaluate first-order formulae

with respect to a set of sign constraints is a novelty of our work, as far as we are

aware. We regard it as a natural step, however, since three-valued semantics have

been used for other aspects of program analysis.

To implement check we must supply three-valued interpretations of all the construc-

tors used to make L -formulae. Then to find check(Φ, M) we substitute M(t) for

each term t in Φ, and evaluate the resulting expression under the three-valued se-

mantics. For the propositional connectives, the usual Kleene semantics, given in

Appendix A.1, is used. Abstract versions of the atomic predicates =, <, ≤ and

allocdj are given by tables in Appendix A.2. The quantifiers ∃X and ∀X are sim-

ply interpreted as the identify function; this is sound because logical variables are

mapped to ‘any’ by each (lifted) M ∈ T . TC subformulae are treated completely

imprecisely, that is, always evaluated as unknown.

3.4. Analysis modules 118

Consider for example

check(∀X(v ×X > 0 → allocd1(X)), {v 7→ zero})

We begin by substituting as described above, obtaining

∀X({v 7→ zero}(v ×X) > {v 7→ zero}(0) → allocd1({v 7→ zero}(X)))

and then evaluating as follows:

; {v 7→ zero}(v ×X) > {v 7→ zero}(0) → allocd1({v 7→ zero}(X))

; {v 7→ zero}(v ×X) > {v 7→ zero}(0) → allocd1(any)

; {v 7→ zero}(v ×X) > {v 7→ zero}(0) → unknown

; {v 7→ zero}(v)× {v 7→ zero}(X) > zero → unknown

; zero× any > zero → unknown

; zero > zero → unknown

; false → unknown

; true

To complete the analysis module it remains to define the initialisation function

init which begins execution, and the procedure call and return functions succC and

succR. The definition of init simply reflects the fact that all program variables in

the main procedure π1 start off with value zero (recall that local variables are set to

zero on procedure entry, and the main procedure is parameterless):

init(·) :=
⋃

v∈∆(π1)

{v 7→ zero}

For procedure calls from procedure π to procedure π′, local variables again begin as

zero. To obtain the sign of each formal parameter, we look up the actual parameter

3.4. Analysis modules 119

ai in the abstract constraint at the call site. When this is not possible, because the

actual parameter’s sign is not tracked in the calling procedure π (i.e. is not in ∆(π))

we must branch for all possibilities. Thus we define succC(M, π, π′, [a1, . . . , ak]) to

be the set of those M ′ ∈ T such that:

1. dom(M ′) = ∆(π′)

2. For each local variable, i.e. each v ∈ Locals(π′), if v ∈ ∆(π′) then M ′(v) = zero.

3. For each formal parameter i.e. each pi in Formals(π′) = [p1, . . . , pk], if the

corresponding actual parameter ai is in ∆(π) then M ′(pi) = M(ai).

This definition leaves M unconstrained at formal parameters whose actual coun-

terpart is not in ∆(π), which effects the required branching. The treatment of

procedure returns is simpler: the signs of variables in the caller are the same as

those before the call, except for the variable into which the result was returned,

whose sign is read from the constraint in the callee.

succr(M, M ′, π, π′, x, r, [a1, . . . , ak]) := ⊕(M, x, M ′(r))

There are many possible variations on the above sign analysis scheme, which we will

not explore; we set out to provide a fully specified example of how to construct an

analysis module, and we have done so.

3.4.3 Soundness conditions for analysis modules

In Subsection 3.4.1 we defined syntactically the interface for analysis modules and

described informally the role of the interface’s various components. But we still need

to be assured that our analysis modules’ functions return correct results, i.e. carry

out a sound analysis. We now state conditions which ensure this.

3.4. Analysis modules 120

In the background development of Chapter 2, soundness came from part 8 of Defini-

tion 2.3.4 (abstraction domain): we simply insisted that “if s ∈ γ(a) then f(i)(s) ⊆

γ(f(i)#(a))”. Now, however, there are three complicating issues:

1. In addition to intraprocedural statements, we must now deal with calls and

returns.

2. We need to ensure that sharing is sound too, i.e. that information shared by

the module really does describe the possible program states.

3. Rather than dealing with a tidy notional “transfer function” f(i), we now

have a list of 15 concrete rules for the execution of the various intraprocedural

statement forms.

As a result, we end up with a list of 17 requirements for soundness; we have relegated

the full list to Appendix A.3.

Definition 3.4.3. We say that an analysis module (as in Definition 3.4.2) is sound

if it satisfies the conditions listed in Appendix A.3.

A brief outline of the soundness conditions follows. For each intraprocedural state-

ment form there are two conditions, the first saying that sharing is sound, and the

second saying that successor computation is sound. Then there are three conditions

concerning respectively initialisation, procedure call and procedure return.

As an example, consider the intraprocedural statement form VarCopy. The condition

for sound sharing is:

sound-share-varcopy If

1. π, s0
l,s−→ l′, s′

2. (s0, s) ∈ γ(a)

3. s = (e, h, A)

3.4. Analysis modules 121

4. s′ = (e′, h, A)

5. e′ = e⊕ {u 7→ e(v)}

then (s0, s, s
′) ∈ Jshare(a, VarCopy(u, v), π)K{0,1,C}

Informally the rule can be read as follows. (We will disregard the state at procedure

entry, s0, for the sake of an easier description.) Premise 1. says that execution can

reach location l in procedure π with state s, and then take one further intrapro-

cedural step to location l′ with state s′. Premise 2. says that the earlier state s is

represented by the abstract value a. Premises 3. - 5. say that the states s and s′

are related exactly as in the rule for execution of Varcopy statements. Finally the

conclusion is that the formula produced by share from the abstract value a really

does correctly describe the concrete states s and s′ (and their relationship to each

other).

The rule for sound successor computation is:

sound-succ-varcopy If

1. π, s0
l,s−→ l′, s′

2. (s0, s) ∈ γ(a)

3. s = (e, h, A)

4. s′ = (e′, h, A)

5. e′ = e⊕ {u 7→ e(v)}

6. (s0, s, s
′) ∈ JΦK{0,1,C}

then there exists a′ ∈ succ(a, VarCopy(u, v), π, Φ) such that (s0, s
′) ∈ γ(a′).

Again disregarding s0, we give an informal explanation of the rule. Premises 1. - 5.

are as before: execution reaches location l in π with state s and then, by mirroring

3.5. Our module-based algorithm extract-model 122

the execution of a VarCopy statement, proceeds to location l′ with state s′. The

earlier state s is represented by abstract value a.

The new premise 6. says that the incoming formula Φ (which in practise will consist

of information shared by the other analysis modules) is a correct description of s,

s′ and their relationship to each other. This allows the succ function to rely on the

information it receives. Finally the conclusion says that the concrete successor state

s′ is “covered” by at least one of the abstract values produced by succ.

We end this section with two brief remarks. Firstly, we originally wanted to put

together our formalisation in a way that would deal with procedure calls and returns,

and sharing of formulae, yet still allow the details of particular statements to be

hidden behind the idea of a transfer function. Our attempts to construct such a

formalisation were unsuccessful, however.

Secondly, there is a kind of “non-locality” in the soundness conditions, in the sense

that the premise π, s0
l,s−→ l′, s′ demands that the location l in π actually be reachable

with state s in the whole program. This is deliberate, because it allows an analysis

module to perform some analysis of the whole program right at the beginning,

and then refer to the results later when being asked for successors or for shared

information.

For example, we later use this in Section 4.6, where we write a module which im-

plements a simple type system. That module performs type inference for the whole

program right at the beginning, and then shares information about the possible

values of variables as the cooperative analysis proceeds.

3.5 Our module-based algorithm extract-model

We are now in a position to present our algorithm extract-model for automati-

cally extracting sound models from programs; it is given in Algorithm Fragments 3.1

3.5. Our module-based algorithm extract-model 123

to 3.5. After some informal discussion of our algorithm, we will prove that it termi-

nates and, provided the analysis module used is sound, produces sound models.

In the background development of Chapter 2, the forward propagation algorithm in

Figure 2.5 was used to automatically extract models. The algorithm we give here

is similar in that it uses forward propagation with a worklist, but with two main

differences. Firstly we must now account for (recursive) procedures, which we do

using summarisation. In this sense our algorithm is based on the summarisation

algorithm from [RHS95]. The idea of summarisation is to “tabulate” the effect of

each procedure, as a transformer from (abstract) entry states to return states; this

information can then be reused across all call sites. With summarisation, it is not

necessary to provide pre- and post-conditions for procedures. Secondly, because

we are no longer hiding the details of intraprocedural statements behind transfer

functions, the algorithm includes a case split, treating the various intraprocedural

statements slightly differently. Our algorithm is generic in that it works with any

analysis module provided.

Note that extract-model is written to use a single analysis module; it does

not include a mechanism for making multiple modules cooperate. This is

because module combination and cooperation is done at the module level: we later

provide a combinator � for combining two modules into one, which makes them

cooperate by exchanging information. By iterated application of � we will be able

to cooperatively combine as many modules as we like.

Our algorithm consists of three parts:

The worklist-step procedure (Algorithm Fragments 3.2 to 3.4) removes an

abstract node from the worklist and calculates its abstract successors, adding

them to the model. Successors that were not already present in the model are

added to the worklist.

Conditional statements If Φ are dealt with (line 78) by reusing the mechanism

3.5. Our module-based algorithm extract-model 124

for sharing: for the ‘if’ branch we make a call to succ using Skip as the

statement, and sending in the guard (adjusted for time) Φ[C\1] as an extra

piece of shared information. Similarly for the ‘else’ branch we send in the

negated guard ¬Φ[C\1].

Potentially dangerous statements (memory access or allocations) are also dealt

with in this way. For example, for a FieldRead at variable v, the algorithm

splits into two branches, one branch where the statement succeeds, and another

branch where it fails. In this second branch we send in the formula ¬allocd1(v1).

The return-step procedure (Algorithm Fragment 3.5) processes procedure re-

turns. Returns cannot be processed using the worklist because the same ab-

stract state at a return point may need to be matched with several different

abstract calling states, some of which may not yet have been generated.

To avoid repeated work, the variable TriedInter is used to track the pairs of

abstract call and return nodes that have been dealt with already. Procedure

summaries are implicit in the set N which is built to over-approximate the

reachable (concrete) states.

The main procedure (Algorithm Fragment 3.1) does some initialisation and

then performs worklist steps as long as they are possible, only trying return

steps when the worklist is empty.

3.5. Our module-based algorithm extract-model 125

Algorithm Fragment 3.1 main procedure of extract-model

type AbsNode = ProcNames× Locs× T

5: . (Here the type “X set” is inhabited by sets of values of type X.)

vars N,Worklist : AbsNode set
vars Edges,CallEdges,RtnEdges,TriedInter : (AbsNode×AbsNode) set
vars progress : boolean

10:
procedure Main

N,Worklist := {π1} × {start} × init(·)
TriedInter := ∅

15: Edges,CallEdges,RtnEdges := ∅
progress := true

while progress do
progress := Worklist-step

20: if progress = false then
progress := Return-step

end if
end while

25: end procedure

3.5. Our module-based algorithm extract-model 126

Algorithm Fragment 3.2 worklist-step procedure of extract-model (1 of 3)

procedure Worklist-step
30:

if there exists w, (π, l, a) such that
w ∈ Worklist and (π, l, a) = w

then
Worklist := Worklist− {w}

35: case Edges(Graph(π))(l) of

. First we handle the “ordinary” statements (those that can’t go wrong)

Skip : l′ ⇒
40: let

Succs := {π} × {l′} × succ(a, Skip, π,True)
in

Edges := Edges ∪ ({(π, l, a)} × Succs)
Worklist := Worklist ∪ (Succs−N)

45: N := N ∪ Succs
end let

VarCopy(u, v) : l′ ⇒
let

50: Succs := {π} × {l′} × succ(a, VarCopy(u, v), π,True)
in

Edges := Edges ∪ ({(π, l, a)} × Succs)
Worklist := Worklist ∪ (Succs−N)
N := N ∪ Succs

55: end let

AssignConst(u, k) : l′ ⇒
let

Succs := {π} × {l′} × succ(a, AssignConst(u, k), π,True)
60: in

Edges := Edges ∪ ({(π, l, a)} × Succs)
Worklist := Worklist ∪ (Succs−N)
N := N ∪ Succs

end let
65:

Arith(u, v1,⊗, v2) : l′ ⇒
let

Succs := {π} × {l′} × succ(a, Arith(u, v1,⊗, v2), π,True)
in

70: Edges := Edges ∪ ({(π, l, a)} × Succs)
Worklist := Worklist ∪ (Succs−N)
N := N ∪ Succs

end let

3.5. Our module-based algorithm extract-model 127

Algorithm Fragment 3.3 worklist-step procedure of extract-model (2 of 3)
75:

If(Φ) : l′1 : l′2 ⇒
let

TrueSuccs := {π} × {l′1} × succ(a, Skip, π, Φ[C\1])
80: FalseSuccs := {π} × {l′2} × succ(a, Skip, π,¬Φ[C\1])

Succs := TrueSuccs ∪ FalseSuccs
in

Edges := Edges ∪ ({(π, l, a)} × Succs)
Worklist := Worklist ∪ (Succs−N)

85: N := N ∪ Succs
end let

Choice : l′1 : l′2 ⇒
let

90: Succs := {π} × {l′1, l′2} × succ(a, Skip, π,True)
in

Edges := Edges ∪ ({(π, l, a)} × Succs)
Worklist := Worklist ∪ (Succs−N)
N := N ∪ Succs

95: end let

. Next handle the “dangerous” statements (which access or allocate memory)

FieldRead(u, v, f) : l′ ⇒
100: let

SuccessSuccs := {π} × {l′} × succ(a, FieldRead(u, v, f), π, true)
FailureSuccs := {π} × {memerror} × succ(a, Skip, π,¬allocd1(v1))
Succs := SuccessSuccs ∪ FailureSuccs

in
105: Edges := Edges ∪ ({(π, l, a)} × Succs)

Worklist := Worklist ∪ (Succs−N)
N := N ∪ Succs

end let

110: FieldWrite(v, f, u) : l′ ⇒
let

SuccessSuccs := {π} × {l′} × succ(a, FieldWrite(v, f, u), π, true)
FailureSuccs := {π} × {memerror} × succ(a, Skip, π,¬allocd1(v1))
Succs := SuccessSuccs ∪ FailureSuccs

115: in
Edges := Edges ∪ ({(π, l, a)} × Succs)
Worklist := Worklist ∪ (Succs−N)
N := N ∪ Succs

end let
120:

3.5. Our module-based algorithm extract-model 128

Algorithm Fragment 3.4 worklist-step procedure of extract-model (3 of 3)

New(u, v) : l′ ⇒
let

125: SuccessSuccs := {π} × {l′} × succ(a, New(u, v), π, true)
FailureSuccs := {π} × {memerror} × succ(a, Skip, π, v1 ≤ 0)
Succs := SuccessSuccs ∪ FailureSuccs

in
Edges := Edges ∪ ({(π, l, a)} × Succs)

130: Worklist := Worklist ∪ (Succs−N)
N := N ∪ Succs

end let

. Finally we do the interprocedural statements
135:

Call(u, π′, [p1, . . . , pk]) : l′ ⇒
let

Succs := {π′} × {start} × succC(a, π, π′, [p1, . . . , pk])
in

140: CallEdges := CallEdges ∪ ({(π, l, a)} × Succs)
Worklist := Worklist ∪ (Succs−N)
N := N ∪ Succs

end let

145: Return(v) ⇒
do nothing

end case
return true

150: else
return false

end if
end procedure

155:

3.5. Our module-based algorithm extract-model 129

Algorithm Fragment 3.5 return-step procedure of extract-model

procedure Return-step

if there exists (π, l, a), (π′, l′, a′), â such that

160: (π, l, a) ∈ N and (π′, l′, a′) ∈ N

Edges(Graph(π))(l) = Call(v, π′, [p1, . . . , pk]) : l̂

Edges(Graph(π′))(l′) = Return(v′)

((π, l, a), (π′, l′, a′)) /∈ TriedInter

((π, l, a), (π′, start, â)) ∈ CallEdge

165: ((π′, start, â), (π′, l′, a′)) ∈ (Edge)∗

then
TriedInter := TriedInter ∪ {((π, l, a), (π′, l′, a′))}
Succs := {π} × {l̂} × succR(a, a′, π, π′, v, v′, [p1, . . . , pk])

RtnEdges := RtnEdges ∪ ({(π′, l′, a′)} × Succs)

170: Edges := Edges ∪ ({(π, l, a)} × Succs)

Worklist := Succs−N

N := N ∪ Succs

return true
else

175: return false
end if

end procedure

3.5. Our module-based algorithm extract-model 130

We now prove termination and soundness of our model-extraction algorithm.

Theorem 3.5.1. The extract-model algorithm terminates.

Proof: For each procedure π, the set of control locations Nodes(Graph(π)) is finite,

and thus

UsedLocs :=
⋃

π∈Procs(P)

Nodes(Graph(π))

is also finite. Letting

M := {π1, . . . , πn} × UsedLocs× T

we see that M is also finite. By inspection of the program, we see that it is an

invariant of the main loop that N ⊆ M and TriedInter ⊆ M ×M . Thus we use the

following as a ranking function:

((|M | − |N |) + (|M ×M | − |TriedInter|), |W |)

using the usual lexicographic order on N×N. We will show that this function strictly

decreases in each iteration of the main loop except the last.

First consider what happens when a worklist step is performed. When successors

are generated (e.g. Succs on line 41) consider the subset of these that are new

(Succs − N). If this is empty, then the step reduces the size |W | of the worklist

(line 34) while leaving N and TriedInter unchanged. On the other hand if Succs−N

is nonempty, then the size of N increases with TriedInter again unchanged.

Secondly consider what happens when a return step is performed: TriedInter gains

one new element, and the size of N stays the same or increases.

Theorem 3.5.2. The extract-model algorithm produces sound models, pro-

vided the analysis module used is sound.

Proof: We check the conditions sound-init, sound-intra, sound-call and sound-

3.5. Our module-based algorithm extract-model 131

return in that order. Here when we write N we mean the contents of N upon

termination of the algorithm, unless otherwise specified; similarly for the edge rela-

tions. Because there are many cases to check for intraprocedural statements, and

because the argument is very similar for each case, we just check four here.

sound-init: Using Definition 3.4.3 (sound-m-init part), there exists a ∈ init(·)

such that (sstart, sstart) ∈ γ(a). On line 13 of the algorithm (π1, start, a
′) is

added to N .

sound-intra: Let π, s0
l,s−→ l′, s′, and let N contain an element w = (π, l, a) with

(s0, s) ∈ γ(a). Inspection of the algorithm shows that whenever a new element

is added to N , it is also added to W , and since W = ∅ when the algorithm

terminates, w must at a later stage be removed from W (on line 34) and

processed in a worklist step. It is also easy to see that during the execution of

the algorithm the set N and the edge relations only increase, so it will suffice

to show that an appropriate node (π, l′, a′) and an appropriated edge were

added at some stage. We split our analysis into cases depending on which of

the intraprocedural rules was used to complete the derivation:

skip: From the premises of the skip rule we have s = s′ and π, s0
p−→ l, s′

and Edges(Graph(π))(l) = Skip : l′.

When (π, l, a) is removed from W the case on line 41 is invoked. By Defi-

nition 3.4.3 (sound-succ-skip part), there exists a′ ∈ succ(a, Skip, π, true)

such that (s0, s
′) ∈ γ(a). To finish we note that (π, l′, a′) will be added to

N on line 45 and that an edge ((π, l, a), (π, l′, a′)) will be added to Edges

on line 43.

varcopy: From the premises of the varcopy rule we have π, s0
p−→ l, s and

Edges(Graph(π))(l) = VarCopy(u, v) : l′ where: s = (e, h, A),

s′ = (e′, h, A) and e′ = e⊕ {u 7→ e(v)}.

When (π, l, a) is removed from W the case on line 50 is invoked. By

3.5. Our module-based algorithm extract-model 132

Definition 3.4.3 (sound-succ-varcopy part), there exists

a′ ∈ succ(a, VarCopy(u, v), π, true) such that (s0, s
′) ∈ γ(a). To finish

we note that (π, l′, a′) will be added to N on line 54 and that an edge

((π, l, a), (π, l′, a′)) will be added to Edges on line 52.

fieldwrite-success: From the premises of the fieldwrite-success rule we

have π, s0
p−→ l, s and Edges(Graph(π))(l) = FieldWrite(v, f, u) : l′

where: s = (e, h, A), s′ = (e, h′, A), e(v) ∈ A and h′ = h ⊕ {(f, e(v)) 7→

e(u).

When (π, l, a) is removed from W the case on line 112 is invoked. By

Definition 3.4.3 (sound-succ-fieldwrite part), there exists

a′ ∈ succ(a, FieldWrite(v, f, u), π, true) such that (s0, s
′) ∈ γ(a′). To

finish we note that (π, l′, a′) will be added to N on line 118 and that an

edge ((π, l, a), (π, l′, a′)) will be added to Edges on line 116.

fieldwrite-failure: From the premises of the fieldwrite-failure rule we have

π, s0
p−→ l, s and Edges(Graph(π))(l) = FieldWrite(v, f, u) : l′

where: s = (e, h, A) and e(v) /∈ A. From the semantics of L and the fact

that e(v) /∈ A, we see that (s0, s, s
′) ∈ J¬allocd1(v1)K.

When (π, l, a) is removed from W the case on line 112 is invoked. By

Definition 3.4.3 (sound-succ-skip part), there exists

a′ ∈ succ(a, Skip, π,¬allocd1(v1)) such that (s0, s
′) ∈ γ(a′). To finish

we note that (π, l′, a′) will be added to N on line 118 and that an edge

((π, l, a), (π, l′, a′)) will be added to Edges on line 116.

other intraprocedural rules: The cases for the remaining intraprocedu-

ral rules are similar to the preceding four cases; we omit these “variations

on a theme”.

sound-call: Let π, s0 −→ l, s : π′, s′ and let N contain an element (π, l, a) with

(s0, s) ∈ γ(a). The conclusion π, s0 −→ l, s : π′, s′ can only have been de-

rived using the call-1 rule, and from its premises we have π, s0
p−→ l, s and

3.5. Our module-based algorithm extract-model 133

Edges(Graph(π))(l) = Call(u, π′, [p1, . . . , pk]) : l′, where: s = (e, h, A),

s′ = (e′, h, A) and

e′ (x) =


e (pi) if x is fi

0 otherwise

where [f1, . . . , fj] = Formals (π′). When (π, l, a) is removed from W the case

on line 138 is invoked. By Definition 3.4.3 (succ-call part), there exists a′ ∈

succC(a, π, π′, [p1, . . . , pk]) such that (s′, s′) ∈ γ(a′). To finish we note that

(π′, l′, a′) will be added to N on line 142 and that an edge ((π, l, a), (π′, l′, a′))

will be added to CallEdges on line 140.

sound-return: Lastly we prove the sound-return part. So let π, s0
l1,s1,π̄,s2,l3,s3−−−−−−−−→

l′, s′ and let N contain elements (π, l1, a1), (π̄, start, a2), (π̄, l3, a3) such that:

(s0, s1) ∈ γ(a1)

(s2, s3) ∈ γ(a3)

((π, l1, a1), (π̄, start, a2)) ∈ CallEdges

((π̄, start, a2), (π̄, l3, a3)) ∈ Edges∗

Now π, s0
l1,s1,π̄,s2,l3,s3−−−−−−−−→ l′, s′ can only be obtained by the return rule, so from

its premises we see that: Edges(Graph(π))(l1) and Edges(Graph(π̄))(l3) have

respectively the forms Call(v, π̄, [p1, . . . , pk]) : l′ and Return(v′).

Hence we see that on line 159 the selection (π, l1, a1), (π̄, l3, a3), a2 must even-

tually be made: the selection must eventually become “eligible”, after which

it cannot be put off forever because when the algorithm terminates there are

no more possible selections.

Also from the premises of the return rule we have

π, s0 −→ l1, s1 : π̄, s2

π̄, s2
p̄−→ l3, s3.

s1 = (e1, h1, A1)

3.5. Our module-based algorithm extract-model 134

s3 = (e3, h3, A3)

s′ = (e′, h3, A3)

e′ = e1 ⊕ {u 7→ e3 (v)}

Only the call-1 rule can produce π, s0 −→ l1, s1 : π̄, s2, and from its premises

we have: s2 = (e2, h1, A1) where

e2 (x) =


e1 (pi) if x is fi

0 otherwise

with [f1, . . . , fj] = Formals (π′).

Finally, then, we have collected all the conditions needed to invoke Defini-

tion 3.4.3 (succ-return part), which shows that there exists

a′ ∈ succR(a1, a3, π, π̄, u, v, [p1, . . . , pk]) such that (s0, s
′) ∈ γ(a′). On line 172

(π, l′, a′) will be added to N , and on lines 169 and 170 the required edges

((π̄, l3, a), (π, l′, a′)) ∈ ReturnEdges and ((π, l1, a1), (π, l′, a′)) ∈ Edges will be

added.

Running example:

Running the above algorithm extract-model with compsigns 〈∆〉 , the sign

analysis module from Subsection 3.4.2, with configuration

∆ := {main 7→ {x, y}, chooseNat 7→ {n, one}, intSqrt 7→ {n, one, x}}

produces exactly the model depicted in Figure 3.10 (page 104).

3.6. Combining analysis modules 135

3.6 Combining analysis modules

3.6.1 The module combinator �

When introducing our model extraction algorithm in the previous section, we promised

to provide a combinator � that combines two analysis modules and makes them co-

operate by exchanging information, using L as a common language. The result of

applying � to two modules is another module, which can be combined again, or used

in the analysis algorithm. We now deliver this �.

Definition 3.6.1. Given modules D and E , we construct their combination D�E

as:

(D � E).T :=
D.T

× E.T

(D � E).γ ((d, e)) :=
D.γ (d)

∩ E.γ (e)

(D � E).share((d, e), s, π) :=
D.share(d, s, π)

∧ E.share(e, s, π)

(D � E).succ((d, e), s, π, Φ) :=
D.succ(d, s, Θ)

× E.succ(e, s, Θ)

where Θ , Φ ∧ (D � E).share((d, e), s, π)

(D � E).succC

(
(d, e), π, π′,
[a1, . . . , ak]

)
:=

D.succC(d, π, π′, [a1, . . . , ak])
× E.succC(e, π, π′, [a1, . . . , ak])

(D � E).succR

 (d, e), (d′, e′),
π, π′, x, r,
[a1, . . . , ak]

 :=
D.succR(d, d′, π, π′, x, r, [a1, . . . , ak])

× E.succR(e, e′, π, π′, x, r, [a1, . . . , ak])

(D � E).init(·) :=
D.init(·)

× E.init(·)

3.6. Combining analysis modules 136

When asked to share a formula, D � E asks each of D and E for a formula, and

conjoins the results. When generating successors, D and E are each given the

other’s shared formulae, as well as the incoming formula Φ, and asked to generate

their own sets of successors. All pairs of these are then returned. We do not try

to eliminate inconsistent pairs here, because this happens in a later iteration of the

analysis anyway, when those pairs have their own successors generated.

Remark 3.6.2. If D and E are sound modules (as per Definition 3.4.3) then so

is their combination D � E.

Intuitively, it seems from Definition 3.6.1 that, when combining n > 1 modules with

�, it doesn’t matter in which order or which way round we combine them. We believe

that it is possible to give an appropriate notion of equivalence between modules,

whence our combination operator � can be shown to be commutative, associative

and idempotent, thereby making the space of modules into a semilattice. Further,

we suspect that the ordering in this semilattice coincides with a natural notion of

refinement, where modules which are higher in the refinement order produce tighter

analysis results.

3.6.2 Example of combination: obtaining a “thorough” sign

analysis

To illuminate the definition of �, we will introduce another module, called the con-

sistency checking module, and explore how it combines beneficially with our sign

analysis module. In fact, we will see that by combining in this way, we automatically

upgrade our sign analysis (which is “compositional”) to a more precise kind (called

“thorough”).

The idea of the consistency checking module is that it doesn’t keep any constraints

of its own concerning the program state — it simply checks for consistency the

3.6. Combining analysis modules 137

information it receives via sharing of formulae. This checking is done using a theorem

prover ρ; hence strictly we construct an indexed family cons 〈ρ〉 of modules.

Because the module maintains no constraints of its own, the set T of abstract values

consists of a single element Um. We call this element Um because, like the spoken

utterance “um”, it conveys no information:

T := {Um}

γ(Um) := State× State

The important component for this module, which performs the actual consistency

checking, is the function succ:

succ(a, s, π, Φ) := if ρ proves ¬Φ then ∅ else {Um}

The other components effectively do nothing:

share(a, s, π) := true

succC(a, π, π′, [a1, . . . , ak]) := {Um}

succR(a, a′, π, π′, x, r, [a1, . . . , ak]) := {Um}

init(·) := {Um}

Running example:

Earlier we applied our model extraction algorithm to our example program from

Figure 3.1, using the sign analysis module compsigns 〈∆〉 from Subsection 3.4.2,

with the particular configuration ∆ given on page 134. This produced the model in

Figure 3.10 (page 104).

Now we apply the algorithm to the same program, but this time using the combined

module compsigns 〈∆〉 � cons 〈ρ〉. This produces a different, more precise model,

3.6. Combining analysis modules 138

Figure 3.11: Another abstract model, more precise than the one in Figure 3.10, built
using the combined domain compsigns 〈∆〉�cons 〈ρ〉 which effects a thorough sign
analysis. (The relations Edges, CallEdges and ReturnEdges are shown in green,
red and blue respectively. This graph is hand-edited for better layout, though our
implementation can generate similar graphs; see Chapter 4.)

3.6. Combining analysis modules 139

shown in Figure 3.11. Each abstract node is now labelled with a pair of values, one

from the sign analysis module and one form the consistency checking module. (Of

course, the component from the consistency checking module is always Um.) Let us

see how sharing between the modules leads to a more precise model.

Consider the abstract node labelled with

([n : pos, one : pos, x : zero], Um)

at location 2 of procedure intSqrt (i.e. the node shown in purple in Figure 3.11).

For ease of layout we will denote by M the sign analysis component at this abstract

node. Let us trace the generation of this node’s successors for the ‘else’ branch.

Example 3.6.3. The relevant invocation of (compsigns 〈∆〉 � cons 〈ρ〉).succ is:

(compsigns 〈∆〉 � cons 〈ρ〉).succ
(
(M, Um), Skip, intSqrt, ¬((x1+1)×(x1+1) ≤ n1)

)

Definition 3.6.1 shows how to compute the above. We break the computation down

into four stages.

1. Collect shared information First we invoke (compsigns 〈∆〉�cons 〈ρ〉).share

to gather up the shared information provided by the two modules:

(compsigns 〈∆〉 � cons 〈ρ〉).share((M, Um), Skip, intSqrt)

; compsigns 〈∆〉 .share(M, Skip, intSqrt)

∧ cons 〈ρ〉 .share(Um, Skip, intSqrt)

; compsigns 〈∆〉 .share(M, Skip, intSqrt) ∧ True

; compsigns 〈∆〉 .share(M, Skip, intSqrt)

; n1 > 0 ∧ one1 > 0 ∧ x1 = 0

and then conjoin this to the formula passed into (compsigns 〈∆〉�cons 〈ρ〉).succ;

3.6. Combining analysis modules 140

for ease of layout we call the result Θ.

Θ := ¬((x1+1)× (x1+1) ≤ n1) ∧ n1 > 0 ∧ one1 > 0 ∧ x1 = 0

2. Compute successors for first module (sign analysis) Next we invoke the

successor functions from each module, supplying Θ as the extra information

parameter. For the sign analysis module, the compositional, three-valued eval-

uation of the formula is unable to determine the truth value of Θ with respect

to M , i.e. check(Θ, M) returns ‘unknown’. The important part of the evalua-

tion of check(Θ, M) is:

M((x1 + 1)× (x1 + 1)) ≤ M(n1)

; M(x1 + 1)×M(x1 + 1) ≤ pos

; (M(x1) + M(1))× (M(x1) + M(1)) ≤ pos

; (M(x1) + pos)× (M(x1) + pos) ≤ pos

; (zero + pos)× (zero + pos) ≤ pos

; pos× pos ≤ pos

; pos ≤ pos

; unknown

Being conservative, the sign analysis module treats unknown formulae as true,

and returns the set of successors {M}:

compsigns 〈∆〉 .succ(M, Skip, intSqrt, Θ)

;


∅ if check(Φ, M) = false

succ′(M, Skip, intSqrt, Θ otherwise

; succ′(M, Skip, intSqrt, Θ)

; {M}

3.6. Combining analysis modules 141

3. Compute successors for second module (consistency checking) Next we

invoke the successor function for the consistency checking module. This causes

the formula ¬Θ to be sent to the theorem prover, and it is here that the shared

information provided by the sign analysis module is put to good use. A reason-

able theorem prover will prove ¬Θ, perhaps working as follows (in each step

rewriting to an equivalent or stronger formula):

¬Θ

; (x1 + 1)× (x1 + 1) ≤ n1 ∨ n1 ≤ 0 ∨ one1 ≤ 0 ∨ ¬x1 = 0

; (x1 + 1)× (x1 + 1) ≤ n1 ∨ n1 ≤ 0 ∨ ¬x1 = 0

; x1 = 0 →
(
(x1 + 1)× (x1 + 1) ≤ n1 ∨ n1 ≤ 0

)
; x1 = 0 →

(
1 ≤ n1 ∨ n1 ≤ 0

)
; 1 ≤ n1 ∨ n1 ≤ 0

So we obtain:

cons 〈ρ〉 .succ(Um, Skip, intSqrt, Θ)

; if ρ proves ¬Θ then ∅ else {Um}

; ∅

4. Form the Cartesian product of the results The final step is to form the

Cartesian product of the two sets of successors.

3.6. Combining analysis modules 142

(compsigns 〈∆〉 � cons 〈ρ〉).succ

 (M, Um), Skip, intSqrt,

¬((x1 + 1)× (x1 + 1) ≤ n)


; compsigns 〈∆〉 .succ(M, Skip, intSqrt, Θ)

× cons 〈ρ〉 .succ(Um, Skip, intSqrt, Θ)

; {M} × ∅

; ∅

Informally, here we see that, using the shared information provided by the sign

analysis module, the consistency checking module has found that the guard of

the ‘else’ branch is not consistent with what is known about the program state,

and thus returned an empty set of successors. When a number of modules have

been combined, if any one of them detects an inconsistency, then there will be

no successors in the combined module.

So what happened in the preceding example? Why did the consistency checking

module detect the inconsistency, but the sign analysis module did not? The answer

is that the function check, which we call compositional because it works by recursion

on the structure of formulae, loses precision. On the other hand, by using a theorem

prover, the consistency checking module performs a “thorough” check of the formula

which, while more expensive than the compositional check, is more precise.

We have not seen any existing research that distinguishes between a thorough and

compositional sign analysis, but this distinction seems natural to us, because it has

been previously observed in other situations where three-valued semantics are used,

such as in [RLS02] with propositional logic, in [AH06] with CTL ∩ LTL and in

[BG00, GH05] with other temporal logics. Appendix A.1.1 contains a few more

details.

3.6. Combining analysis modules 143

Comparing the resulting models Comparing the models in Figures 3.10 and 3.11

(pages 104 and 138 respectively) we can see that using the combined analysis, i.e. the

thorough sign analysis, produces a model that is more precise (and thus better for

verification), because one spurious branch of abstract nodes is eliminated (starting

from the purple node).

In terms of computational cost, the cost per successor computation is much higher

with the thorough sign analysis due to the extra invocation of the theorem prover;

on the other hand, with the thorough analysis fewer successor computations were

needed in building the model, because one spurious branch of abstract nodes was

eliminated.

In any case we won’t claim, and have no need to claim, that the thorough analysis is

“better” than the compositional one or vice versa; the users of our verification sys-

tem can make that decision for themselves. But we have provided a simple method

for obtaining one analysis from the other via an ad-hoc combination; we believe that

this supports the user’s ability to experiment with different kinds of analysis. Our

consistency checking module could be reused unmodified, for instance, to automat-

ically upgrade other analyses, such as module based on the parity abstraction.

Further remarks We end this section with some further remarks concerning our

preceding example of module combination and the benefits of information sharing.

Firstly, we should perhaps have reservations about our use of the term “thorough”,

because the logic L is undecidable and therefore we cannot obtain a check that is

“as thorough as possible”; our thoroughness is relative to the completeness of the

theorem prover ρ. However, if the user wants to try a different theorem prover ρ′,

or even combine two or three of them, this is easily possible: simply form e.g.

compsigns 〈∆〉 � cons 〈ρ〉 � cons 〈ρ′〉 � cons 〈ρ′′〉

3.7. Discussion of our choice of common logic L 144

Secondly, in case the reader is wondering why we did not introduce the consistency

checking domain in Chapter 2 (Background), the reason is that there is no such

domain in the conventional settings. The module provides reasoning power but no

real abstract state of its own, and this only makes sense in the context of formula

sharing.

Thirdly, because the sign domain is “flat”, the only improvement in precision that

can be achieved by sharing formulae is to detect inconsistency. With non-flat do-

mains, more subtle improvements can occur.

3.7 Discussion of our choice of common logic L

We finish this chapter by discussing our decision to use a first order logic with

transitive closure, or FO(TC), as our common logic L . Essentially this decision is

an educated guess, and we offer the following arguments in support of it:

1. Some notion of reachability is clearly necessary. It has been observed

(e.g. [IRR+04, BCO04]) that the ability to express the reachability of data via

particular variables and fields is essential for analysing and verifying programs

using dynamic data structures1. FO(TC) includes a very general notion of

reachability.

2. Sound FO(TC) reasoning can be done with existing first order provers.

By encoding transitive closure subformulae using first order predicates (see

page 63), one can perform sound (but necessarily incomplete) reasoning about

FO(TC) formulae using the use of the wide variety of existing first order

provers.

3. FO(TC) can express some structural/spatial reasoning. In [BCO04],

decidable fragments of separation logic are given for reasoning about lists

1In this light, however, [MN05] is interesting because it shows what can still be said about data
structures without using reachability.

3.7. Discussion of our choice of common logic L 145

and trees. Given the nature of separation logic one might expect these to be

“intrinsically second order”, but in fact the decidable fragments from [BCO04]

(and more) can be translated into a decidable fragment of FO(TC) (this fact

is briefly mentioned in [YRS+06]).

4. Ownership appears related to transitive closure. The ownership con-

cept mentioned in Subsection 2.5.3, which has been proposed as a crucial

concept in making the verification of object-oriented programs scalable, seems

to be related to transitive closure because it talks about paths through the

heap. Suppose O1 and O2 are objects at the top level of a program, and that

O2 owns an object P . Then the owner-as-dominator formulation of ownership

says that P must be unreachable from O1, except along paths which go via

O2. This means that O1 can only access P by going through P ’s owner O2.

In any case, our development depends only on very minimal properties2 of L , and

thus the common language can be changed freely.

What other languages might we use? Second order logic, or even full higher order

logic, spring to mind. These would certainly allow greater expressiveness, and would

ease the problem of getting information from the modules into the intermediate

language; however transfer in the other direction would become correspondingly

more difficult. There appears to be little known about automated theorem proving

in second and higher order logics. Technically, sound reasoning about higher order

logics can be encoded in first order logic (see e.g. [NR03]) so an analogue of point 2.

above applies, but the encodings appear too awkward to use, whereas the encodings

of FO(TC) are quite clean.

2Specifically: L is required to contain True and the conjunction operator ∧, and be able to
express the facts that a program variable is nonnegative, and contains an allocated heap address.

3.8. Summary 146

3.8 Summary

In this chapter we presented our new modular verification framework, based on the

ideas of the open product from Chapter 2. In our approach, a number of inde-

pendently developed software modules called analysis modules are “plugged into”

a generic verification algorithm, which invokes each analysis module as necessary

to analyse the target program. Each analysis module implements a different kind

of abstraction, and, as the analysis proceeds, the generic algorithm controls the

propagation of information between them. We gave a detailed description of all as-

pects of our system: the kind of programs to be analysed, the kind of assertions to

be checked, the interface which analysis modules implement, the common language

with which they communicate, and the generic verification algorithm. We further

gave a formal account of all these aspects of the framework, culminating in a proof

that the verification results produced are sound.

The important parts of the development were as follows.

� The target programs, i.e. the programs analysed by the verification system,

come from an idealised imperative heap-manipulating language with recursive

procedures and non-determinism. Programs are represented in CFG form.

� Intuitively an analysis module is a program analysis/verification tool which has

been appropriately wrapped for integration into our system. Analysis modules

implement a common interface, which extends that of an abstraction domain,

adding functions for the propagation of information between modules.

� For the common language with which the analysis modules communicate, we

chose a first order logic with transitive closure, or FO(TC). FO(TC) is more

expressive than first order logic (which cannot express important properties of

data structures e.g. reachability), but avoids the complications of second order

or higher order logic.

3.8. Summary 147

� The generic verification algorithm is worklist-based and uses procedure sum-

marisation to handle recursive procedures, without requiring that they be

annotated with pre- and post-conditions. The algorithm is initially presented

in a form that uses a single analysis module, and is then extended to arbitrary

numbers of analysis modules via the � operator, which, given two analysis

modules, procedures their cooperating combination.

We showed how two particular analysis modules — for the compositional sign anal-

ysis and consistency checking techniques — can be built, and showed how, by ex-

changing formulae, they cooperate to produce better results.

Having set out our verification framework, in the next chapter we will consider the

task of implementing the framework effectively.

Chapter 4

Implementation: the hector

system

In this chapter we describe our experimental tool hector which implements the

verification framework developed in Chapter 3, beginning with an overall summary

of the implementation.

4.1 Overview of implementation

Our system hector comprises:

� Module-based verification framework: The core of hector is our module-

based model extraction algorithm (the “broker”, Section 3.5), implemented for

any number of analysis modules combined cooperatively using the � operator

(Subsection 3.6.1). We include code for identifying counterexample paths when

verification fails.

� Analysis modules: Seven techniques (listed shortly) are implemented as

analysis modules, with a mix of deep but expensive and cheap but shallow

analyses.

148

4.1. Overview of implementation 149

� Visualisation facilities (with web interface): hector can produce vi-

sual output showing: control flow graphs, abstract models of programs (or

parts thereof), and counterexamples to verification. These outputs can be

customised in various ways, such as by hiding the components from a particu-

lar analysis module, and can optionally include an indication of where sharing

between modules proved to be useful. For ease of use, the visualisation facili-

ties are accessed through a web interface, which can also be used to organise

models into folders and annotate them with comments.

� Model checking extensions: After developing the basic hector system we

added three interesting extensions: model checking of a “two-level” version of

safety LTL, falsification of (some) safety properties as well as their verification,

and the post-pruning of models, which cheaply prunes away (some) infeasible

states. The discussion of these extensions is deferred until Chapter 6.

The analysis modules currently implemented are:

tpa provides trivector predicate abstraction as in Subsection 2.5.1.

mpa provides monomial predicate abstraction also as in Subsection 2.5.1.

tvla provides three-valued shape analysis as on page 65 in Subsection 2.5.3.

types (Section 4.6) places a type system on top of our untyped language, performing

type inference to discover variables that are non-negative, allocated, Boolean

or null.

symbprop (Section 4.7) provides symbolic constant propagation [Min06, LF08].

compsigns (Section 4.3) provides a simple sign analysis, interpreting formulae from

other modules using a compositional three-valued semantics.

refs (Section 4.7) provides simple tracking of heap references: each tracked variable

is classified as either ‘null’, ‘ref’ (a valid heap reference) or ‘other’.

4.2. Implementation of module-based framework 150

hector is written in Prolog, using SWI Prolog v5.6.55, and consists of about

17k lines of code. We chose to use Prolog due to a personal preference for the lan-

guage, and because it has several features well-suited to rapid prototyping. Code can

be developed in small pieces, which can then be easily tested in Prolog’s interactive

mode (a process greatly helped by the existence of little mutable state). Backtrack-

ing (non-determinism) can be used to quickly produce inefficient but nevertheless

correct implementations of predicates. Lastly, Prolog’s facilities for manipulating

terms make representing and working with data such as L -formulae very easy.

Figure 4.1 shows the overall structure of the implementation of hector. This

diagram can be regarded as a more precise, implementation-oriented version of our

introductory Figure 1.1.

As a prototype, the hector implementation is not highly “tuned” for speed, but we

have introduced some simple optimisations which we detail. Where convenient, we

exploited existing software; hector invokes for various purposes TVLA [LAMS04,

SRW99], Simplify [DNS05], dot [GN00], PiLLoW [HC01] and scheck [Lat03], as we

will mention at appropriate points.

Between mid 2007 and early 2008 the web interface to hector was publicly acces-

sible. It is now our intention in the near future to release hector under an open

source license, once we have tidied up the code.

4.2 Implementation of module-based framework

Our implementation simply uses the Prolog database (via assert and retract) to

store programs, configurations and models. A program is stored using the following

collection of predicates:

:- dynamic field/1. % field(FieldName).

:- dynamic proc/3. % proc(ProcName, Params, LocalVars).

4.2. Implementation of module-based framework 151

Figure 4.1: The overall structure of the hector verification system. (This dia-
gram can be regarded as a more precise, implementation-oriented version of our
introductory Figure 1.1.)

4.2. Implementation of module-based framework 152

:- dynamic edge/3. % edge(ProcName, Location, Edge).

:- dynamic shorthand/2. % shorthand(Name, Body).

hector reads target programs in from text files. Figure 4.2 shows the file for our

integer square root program from Chapters 2 and 3. Such files are in Prolog syntax

already, so they can be loaded directly into the database. Note that formulae of

L are simply represented by appropriate Prolog terms. The predicates used should

be self-explanatory apart from perhaps shorthand/2, which allows one to declare

shorthand names for large formulae, to make the program clearer. (shorthand/2

also provides quick access to some common formula patterns; we lack the space to

document this feature.) We emphasise that this shorthand mechanism is purely

cosmetic and does not allow one to introduce inductively defined predicates.

Configuring the analysis is also done using a text input file (as shown in Figure 4.3);

analysis modules are enabled and disabled, and configured on a per-procedure basis,

with the following predicates:

:- dynamic enabled/1. % enabled(ModuleName).

:- dynamic config/3. % config(ProcedureName, ModuleName,

Configuration).

Models are represented using a collection of Prolog predicates:

:- dynamic absnode/4. % absnode(AbstractNodeID, ProcName,

Location, AbstractValue)

:- dynamic edge/2. % edge(SourceNodeID, DestNodeID)

:- dynamic call_edge/2. % call_edge(SourceNodeID, DestNodeID)

:- dynamic rtn_edge/2. % rtn_edge(SourceNodeID, DestNodeID)

With this scheme, loading and saving models is trivial — e.g. to load a model, only

a single call to load_files is needed. It also means that the models are saved in a

4.2. Implementation of module-based framework 153

shorthand(is_int_sqrt,

and(

lte(times(x, x), n),

lt(n, times(plus(x,1), plus(x,1)))

)

).

proc(main, [], [x, y]).

edge(main, start, call(x, chooseNat, [], 0)).

edge(main, 0, call(y, intSqrt, [x], terminated)).

edge(main, asserterror, skip(asserterror)).

edge(main, memerror, skip(memerror)).

edge(main, terminated, skip(terminated)).

proc(chooseNat, [], [n, one]).

edge(chooseNat, start, assignConst(one, 1, 0)).

edge(chooseNat, 0, choice(1, 2)).

edge(chooseNat, 1, arith(n, n, plus, one, 0)).

edge(chooseNat, 2, return(n)).

edge(chooseNat, asserterror, skip(asserterror)).

edge(chooseNat, memerror, skip(memerror)).

proc(intSqrt, [n], [x, one]).

edge(intSqrt, start, assignConst(one, 1, 0)).

edge(intSqrt, 0, if(lte(times(plus(x,1), plus(x,1)), n), 1, 2)).

edge(intSqrt, 1, arith(x, x, plus, one, 0)).

edge(intSqrt, 2, if(is_int_sqrt, 3, asserterror)).

edge(intSqrt, 3, return(x)).

edge(intSqrt, asserterror, skip(asserterror)).

edge(intSqrt, memerror, skip(memerror)).

Figure 4.2: An example target program in the form read in by hector.

4.3. Implementation of sign analysis module (compsigns) 154

enabled(tpa).

enabled(compsigns).

config(chooseNat, compsigns, [n, one]).

config(main, compsigns, [x]).

config(intSqrt, compsigns, [n, x, one]).

config(intSqrt, tpa,

[

lte(times(x, x), n),

withNeg(lte(times(plus(x,1), plus(x,1)), n)),

eq(one, 1)

]).

Figure 4.3: An example configuration of the analysis, in the form read in by hector.

human-readable and editable form, can be searched with ad-hoc Prolog queries, and

can be manipulated with a host of other programs such as ‘grep’ and ‘awk’. Storing

data in text files like this is the UNIX tradition.

Using SWI Prolog’s module system, we place the code for each analysis module in

a separate Prolog module. Each such module provides predicates init/1, share/4,

succ/5, succ_c/5 and succ_r/8 which correspond directly to the components of

our interface for analysis modules (Definition 3.4.2). The � combinator (cooperative

combination of analysis modules) is also implemented in such a Prolog module.

4.3 Implementation of sign analysis module (comp-

signs)

Our multi-variable sign analysis module is almost a direct translation of Subsec-

tion 3.4.2 into Prolog, and therefore we will not say much about it. To represent

our finite partial functions we use SWI’s built in assoc library. The only new point

that arose during implementation was to exploit the “laziness” of some of the op-

4.4. Implementation of predicate abstraction modules (tpa and mpa) 155

erators involved, to avoid unnecessary computation. For example when abstractly

evaluating X + Y , if X evaluates to ‘any’ there is no need to evaluate Y ; the result

will be ‘any’ in all cases. Similar cases exist for the Boolean connectives.

4.4 Implementation of predicate abstraction mod-

ules (tpa and mpa)

We have written modules which implement the trivector and monomial predicate

abstraction techniques described in Subsection 2.5.1. We will describe the implemen-

tation of the trivector module only here, since the implementation of the monomial

module is very similar and shares most of the code.

4.4.1 Connecting formulae

Typically, successor computation in a predicate abstraction system is done using a

weakest precondition operator, or a strongest postcondition operator which we used

when we introduced predicate abstraction in Subsection 2.5.1. Collectively these

operators are called predicate transformers. However, we couldn’t see how to use

such operators in the presence of sharing; formulae received from other modules use

two time indices, whereas those produced by the weakest precondition or strongest

postcondition operators only use one. Thus we use what we call connecting formulae

instead of a predicate transformer.

The connecting formula for a statement s is so-called because it connects the state

before the execution of s to the state afterwards. In our example program from

Figure 3.1, the procedure ‘chooseNat’ contains a statement Arith(n, n, +, one), i.e.

n := n + one. The connecting formula for this statement is:

n = n1 + one1 ∧ one = one1 ∧ ∀X(allocd(X) ↔ allocd1(X))

4.4. Implementation of predicate abstraction modules (tpa and mpa) 156

The conjunct which asserts that the allocation set is not changed by the statement

uses a quantifier; if the program included any heap fields, each field would similarly

introduce a universal quantifier.

There are also connecting formulae for procedure calls and returns. Figure 4.4 shows

the interpretation of the time indices 0, 1 and C when procedure calls are processed.

For the call to ‘intSqrt’ in the ‘main’ procedure, the connecting formula is

one = 0 ∧ x = 0 ∧ n = x1 ∧ ∀X(allocd(X) ↔ allocd1(X))

(Because of the time indices, there is no confusion between the variable x in the

‘main’ procedure, and the variable with the same name in the ‘intSqrt’ procedure.)

Returns have the most complicated connecting formulae. Figure 4.5 shows the

interpretation of the time indices for returns; this is where the time indices 2 and 3

come into play. For the return from ‘intSqrt’ back to ‘main’, the formula is:

x1 = x ∧ y = x3 ∧ n2 = x1

∧ ∀X(allocd1(X) ↔ allocd2(X)) ∧ ∀X(allocd3(X) ↔ allocd(X))

This formula encodes the returning of the result, but also the passing of parameters,

even though this has been done once already in the connecting formula for the call.

This is crucial because otherwise frame conditions established in the called procedure

cannot be properly used in the analysis of the calling procedure.

Finally there is also a connecting formula for initialisation, which states that the

local variables of the main procedure π1 begin with the value 0; for our example

program this is x = 0 ∧ y = 0.

We wonder how much predicate abstraction suffers from using connecting formulae

rather than a predicate transformer. Using connecting formulae seems to result in

larger formulae being sent to the theorem prover, yet formula size is not necessarily

4.4. Implementation of predicate abstraction modules (tpa and mpa) 157

Figure 4.4: An illustration of the roles of the time indices 0, 1 and C when considering
a procedure call.

a good measure of how “difficult” a formula is for the prover. Our suspicion is that

the equalities between different “versions” of the same variable, e.g. x = x1, are well-

handled by a Nelson-Oppen style prover like Simplify, but that such a prover may

have more trouble with the conjuncts which express the non-change of allocation

sets and fields, because these involve quantifiers.

4.4.2 Formulating predicate abstraction as a module

Now that we have our connecting formulae, it is fairly easy to implement the trivector

predicate abstraction technique as an analysis module tpa 〈ρ, ∆〉 . Here the module

is parametrised by the theorem prover ρ to be used, and the selection of abstraction

4.4. Implementation of predicate abstraction modules (tpa and mpa) 158

Figure 4.5: An illustration of the roles of the five time indices 0, 1, 2, 3 and C when
considering a procedure return.

4.4. Implementation of predicate abstraction modules (tpa and mpa) 159

predicates: ∆ maps each procedure in the program to a list

∆(π) = [P 1, . . . , P n]

of abstraction predicates to be used in that procedure, where each P i is in L {0,C}.

Then T contains conjunctions of these formulae or their negations.

T :=

Ψ1 ∧ · · · ∧Ψk

∣∣∣∣∣∣∣
each Ψi is from {P i,¬P i, true}

where [P 1, . . . , P n] = ∆(π) for some π ∈ Procs(P)


Concretisation is easy: since the abstract values are formulae of L , describing the

starting state and the current state, we map each to the set of pairs of states where

it is true:

γ(Ψ) := JΨK{0,C}

Our definition of share is likewise simple. We make share propagate the entire ab-

stract value1, which is already a formula (substituting time index 1 for C, to indicate

that we are describing the state before execution of the statement of interest):

share(Ψ, s, π) := Ψ[C\1]

Successor computation follows the same pattern as in Example 2.5.2, i.e. we con-

struct a formula Θ expressing “what we know” about the new state, and then test

each abstraction predicate P i in turn, to see whether either P i or ¬P i follow from Θ.

The difference is that instead of being constructed with the strongest postcondition

operator SP, Θ is now a conjunction of

1We haven’t made share also propagate the connecting formula. This would be sound, but seems
pointless because the connecting formula only expresses the semantics of the language, which all
the modules should know about anyway. Having said that, early in the work we had a separate
“semantics” module whose sole job was to share the connecting formulae; the predicate abstraction
modules then required no notion of the semantics of the language. This gives rise to interesting
possibilities for also making the system parametric w.r.t. the programming language used, but had
to be abandoned when we decided not to use formula sharing during procedure calls and returns.

4.4. Implementation of predicate abstraction modules (tpa and mpa) 160

� the (time-substituted) abstract constraint (Ψ̂1∧· · ·∧ Ψ̂n)[0\1] whose successor

we are computing,

� the connecting formula, and

� the extra constraints Φ received from other modules (this is how we take

advantage of shared information).

Thus a first attempt at defining the succ function is

succ′(Ψ̂1 ∧ · · · ∧ Ψ̂n, s, π, Φ) := {Ψ1 ∧ · · · ∧Ψn}

where

Θ := (Ψ̂1 ∧ · · · ∧ Ψ̂n)[0\1] ∧ connect(s, π) ∧ Φ

and

[P 1, . . . P n] = ∆(π)

and each Ψi is given by

Ψi :=


P i if ρ proves Θ → P i

¬P i if ρ proves Θ → ¬P i

true otherwise

This is sound but, just as with the sign analysis module compsigns , the infor-

mation received from other modules may actually contradict the abstract value, so

it’s a good idea to first check whether the known information Θ is consistent, and

generate an empty set of successors if it is not. Thus we define

succ(Ψ̂1 ∧ · · · ∧ Ψ̂n, s, π, Φ) :=


∅ if ρ proves ¬Θ

succ′(Ψ̂1 ∧ · · · ∧ Ψ̂n, s, π, Φ) otherwise

4.4. Implementation of predicate abstraction modules (tpa and mpa) 161

where Θ is as before. The above definitions implicitly account in a sound way for the

undecidability of the logic L . The functions succC , succR and init are implemented

similarly.

Remark: consistency checking We can obtain the consistency checking mod-

ule cons of Subsection 3.6.2 from either of the predicate abstraction modules, by

choosing an empty list of abstraction predicates for all procedures, and replacing

the connecting formulae with true.

4.4.3 Interfacing with the theorem prover

We have used the existing theorem prover Simplify [DNS05]. We give Simplify a

few basic axioms about our allocation predicates, e.g.

∀Xallocd(X) → X > 0

and some axioms concerning integer multiplication. Simplify has no built-in support

for transitive closure, so TC subformulae are systematically replaced with uninter-

preted predicates applied to the appropriate terms.

Our initial intention was not to give Simplify any axioms for reasoning about TC

formulae (such as those in Figure 2.5.3). We believed that TC reasoning could be

left entirely to the shape analysis module. However in practice we discovered one

specific situation in which this plan fails: because we have implemented sharing only

for intraprocedural statements, at procedure calls and returns the shape analysis

module is unable to help out with the TC reasoning. Fortunately, since the heap

doesn’t change during parameter passing and value return, a very limited form of

TC reasoning suffices. We won’t give the full details, but when we see a certain kind

of subformula of the form

TC[A,B] [Φ(A, B)] (t, t′)

4.5. Implementation of shape analysis module (tvla) 162

we generate axioms of the form

∀X, Y
(
Φ(X, Y) ↔ Φ[j\k](X, Y)

)
→

∀X, Y
(
TC[A,B] [Φ(A, B)] (X, Y) ↔ TC[A,B] [Φ[j\k](A, B)] (X, Y)

)

where j, k ∈ Time are distinct time indices (recall that [j\k] denotes “time substi-

tution”). Each such axiom is an instantiation of the idea that if two relations are

equal, then their transitive closures must be equal also, and allows TC properties to

be “carried over” from one time index to the next, provided the underlying relation

has not changed. These axioms could be dropped if we implemented formula sharing

for calls and returns.

We chose the Simplify prover because it has been used in many program verification

systems (a partial list is included in [DNS05]). However, since the theorem prover

is hidden behind a well-defined interface, another prover could be used instead with

minimal changes to the hector code.

4.5 Implementation of shape analysis module (tvla)

In this section we describe the shape analysis module we have written. Of the

modules currently included in hector, the shape analysis module, tvla , has by

far the most difficult and involved implementation, and consequently this section is

quite long.

4.5.1 Basic implementation and choice of core predicates

Our shape analysis module is built using (a slightly modified version of) the existing

TVLA software. As described in Subsection 2.5.3 (page 65 onwards) TVLA uses

4.5. Implementation of shape analysis module (tvla) 163

three-valued heap models, such as the one in Figure 2.10, to represent sets of concrete

heaps. Thus the abstract value space T is the set of such three-valued heaps, along

with additional elements givenup and ignoring, whose roles will be explained shortly.

We take the domain of our TVLA models to be the set of allocated heap objects

rather than the set of all heap addresses. We need to track the heap over the three

time indices 0, 1 and C, so all of our predicates come in three versions ([JLRS04]

takes a similar approach, but only uses two states instead of three; in the language

of that paper, our vocabulary is tripled instead of doubled). As usual with TVLA,

we represent our heaps with concrete predicates of two kinds:

predicates for variables: For each variable v in a procedure π, for each time

index j, there is a unary predicate named pi C Var[v] j which indicates where

the variable points.

predicates for fields: For each field f in the program, for each time index j,

there is a binary predicate named C Field[f] j which indicates where the

field points.

The declarations of these core predicates, and their update rules for each statement,

are generated from the target program by our module.

As well as being the most complicated module we implemented, our shape analysis

module is the most configurable. The following aspects of its behaviour can be

“tuned”:

Tracked variables and ignored variables The module can be instructed not

to model certain program variables. Such variables we call ignored variables,

and the remaining variables we call tracked variables. A common reason to

omit a variable from the shape analysis is that it is used to store integer data

values rather than object addresses. Ignoring irrelevant variables gives rise to

4.5. Implementation of shape analysis module (tvla) 164

smaller abstract heaps, but also fewer of them, because heaps are no longer

considered unequal solely because of different values of the irrelevant variables.

Tracked fields and ignored fields The comments about tracked versus ignored

variables also apply to fields.

Tracked procedures and ignored procedures The module can also be in-

structed not to perform shape analysis at all in certain procedures, which we

call ignored procedures. During the analysis of such procedures, the special

value ignoring will be used as this module’s abstract value. A call to an ig-

nored procedure is handled by taking the abstract heap at the call point and

copying it unchanged to the return point. Hence, a procedure can only be

soundly ignored if it doesn’t update any tracked fields, doesn’t allocate any

new heap objects, and doesn’t invoke any tracked procedures. (This condition

is enforced by our module.)

Instrumentation for reachability Currently our module can generate the dec-

larations and update rules for two kinds of reachability instrumentation:

� A predicate named pi I reach v f j can be generated to track whether

each heap object is reachable from the program variable v in procedure

π by following the field f (at time index j).

� A predicate named I cycle f j can be generated to track whether each

heap object lies on a cycle of pointers of the f field (at time index j).

Part of the module’s configuration consists of choosing for which variables and

fields these instrumentation predicates should be generated.

Focusing The focus operation [SRW99] is intuitively a kind of case-splitting:

when a formula evaluates in a particular heap to the third truth value unknown,

focusing splits into two cases, one where the formula is true, and another where

it is false. This can lead to improved precision.

4.5. Implementation of shape analysis module (tvla) 165

Our module performs focusing only on the pi C Var[v] predicates which rep-

resent (current) program variables. Part of the module’s configuration consists

of choosing for which variables in which procedures focusing should be per-

formed.

Sharing patterns The final part of the configuration is to decide what kinds of

properties the shape analysis module should share with other modules. This is

done by specifying patterns of formulae that should be considered for sharing,

as we will detail in Subsection 4.5.5.

4.5.2 Cases where shape analysis “gives up”

A significant design decision taken in our module is that we consider a variable v to

be null (in procedure π at time index j) if the corresponding predicate pi C Var[v] j

is false everywhere, i.e. there is no object to which the variable may point. We make

the same interpretation for fields.

This choice simplifies the representation of heaps, because there is no need to main-

tain separate information about the nullness of variables and fields; but, problem-

atically, it also leaves us with no way to represent the situation where a tracked

variable is neither null nor pointing to any object (e.g. a variable used for integer

data).

Our solution is to identify statements which might introduce such a situation, and

treat them with special care. Such statements include for instance assigning to

a tracked variable from an ignored variable, reading into a tracked variable from

an ignored field, and assigning the result of an arithmetic operation to a tracked

variable. However, it suffices to correctly handle the copying of values from ignored

variables to tracked ones, because other problematic statements can be transformed

to first put their result into a new temporary ignored variable. When computing

successors for such a statement VarCopy(u, v), where u is tracked and v is ignored,

4.5. Implementation of shape analysis module (tvla) 166

the succ function first inspects the shared information received. If this contains as

a conjunct one of the formulae

v1 = 0, allocd1(v1), v1 = 0 ∨ allocd1(v1)

then the analysis can continue normally. Otherwise, the shape analyser “gives up”,

returning as sole successor the special value givenup. In this way, the shape analysis

module uses information from other modules to overcome its own shortcomings.

The successor of givenup under any operation is also givenup so, in that particular

branch of the model, no further shape analysis will be attempted.

4.5.3 Treatment of procedure calls and returns

Our treatment of procedure calls and returns (for tracked procedures) is similar to

that in [JLRS04], in that we use a multiple vocabulary (i.e. doubled or tripled) to

discover relations between states at the beginning and end of a called procedure.

When we compute the abstract state upon entry to a called procedure, the TVLA

operations we invoke to do this will automatically discard details of the parts of

the heap which are not of interest to the called procedure. This is also similar to

[JLRS04], and is good, because it gives smaller abstract heaps and makes procedure

summarisation perform better.

The downside of this arrangement, however, becomes apparent when it is time to

process the corresponding procedure return: any heap structure not relevant to

the called procedure has been lost. How can one recover it? For a subclass of

programs called “cutpoint-free programs”, one approach given in [RSY05] performs

local reasoning about procedures, which involves partitioning the heap at the call

site into the part accessed by the procedure, and the rest of the heap (which will

not be changed in the call). This is very reminiscent of separation logic.

We considered implementing this “local reasoning” approach but found that, be-

4.5. Implementation of shape analysis module (tvla) 167

cause our hector system allows sharing of information between modules, a more

lightweight solution is possible, which we now describe. Within our shape analysis

module we simply “bite the bullet” and accept that after a procedure has returned a

lot of information about the heap will be lost. However, there may be other modules

in the system, such as the predicate abstraction modules, which, using frame con-

ditions from the called procedure, still maintain constraints about the overall heap

structure. Using these constraints and the sharing mechanism, this information can

then, to an extent, be “put back” into the shape analysis.

4.5.4 Using shared formulae: translation followed by coer-

cion

In this subsection we describe how our shape analysis module uses shared formulae

in the common logic L to make its abstract heaps more precise. (This is in addition

to the special use, previously described, of shared formulae for deciding whether to

“give up” or not). There are two stages to the process: firstly, the formulae of L

are translated into the logic used internally by TVLA, and secondly the translated

formulae are applied to the abstract heap using the coercion operation. Coercion can

result in the detection of inconsistency between the abstract heap and the shared

formulae, but also, more subtly, in the “sharpening” of the abstract heap by replacing

some unknown values with true or false.

Translation of formulae Since TVLA’s internal logic is also a first order logic

with transitive closure, at first glance it seems that formulae of L are in the right

form already. Three difficulties present themselves, however.

1. The universes over which the logics are interpreted are different. In L vari-

ables range over Z, whereas in TVLA’s logic they range over (just) the allo-

cated objects.

4.5. Implementation of shape analysis module (tvla) 168

Rules for Boolean connectives:

true† , true

(¬Φ)† , ¬(Φ†)

(Φ1 ∧ Φ2)
† , (Φ†

1) ∧ (Φ†
2)

(Φ1 ∨ Φ2)
† , (Φ†

1) ∨ (Φ†
2)

(Φ1 → Φ2)
† , (Φ†

1) → (Φ†
2)

(Φ1 ↔ Φ2)
† , (Φ†

1) ↔ (Φ†
2)

Rules for quantifiers:

(∃X(allocd(X) ∧ Φ))† , ∃X(Φ†)

(∃X(allocd1(X) ∧ Φ))† , ∃X(¬isNew(X) ∧ (Φ†))

(∀X(allocd(X) → Φ))† , ∀X(Φ†)

(∀X(allocd1(X) → Φ))† , ∀X(¬isNew(X) → (Φ†))

Figure 4.6: Our translation Φ 7→ Φ† from L to TVLA’s internal logic. (The pred-
icate isNew is built into TVLA and identifies new objects allocated by the current
statement.)

2. In L , fields are encoded with functions and program variables are encoded

with variables; but with TVLA relations are used for both.

3. It is not enough for the translation to be correct in the two-valued sense; we

must also consider the three-valued behaviour of the translated formula. This

is because even when two formulae are equivalent over two-valued models,

one may be more precise over three-valued models. (See Appendix A.1 for an

example of this phenomenon.)

Our translation, Φ 7→ Φ†, handles Boolean connectives and quantifiers in a structural

manner, as given by the rules in Figure 4.6. Note that we only translate quantifiers

whose variables are suitably “guarded” by an allocation predicate; for these formulae

the problem of differing universes goes away.

4.5. Implementation of shape analysis module (tvla) 169

Translation of literals and transitive closure subformulae How are we to

translate the literals? An early version of our translation, included in a technical

report [Cha06b], treated the literals very systematically. That version included a

scheme for translating arbitrary L terms, and then gave translated versions of the

relation symbols such as = and 6=.

Unfortunately, our systematic translation did not work well. The problem, we dis-

covered, was that it produced results that were correct in the two-valued sense, but

performed poorly under three-valued evaluation. Though we were well aware of

this phenomenon in theory, its occurrence in practice surprised us repeatedly. For

example, translation of an equality between a logical variable and some other term

could give rise to a subformula of the shape

∃X(X = u ∧ Φ(X))

which is less precise under three-valued evaluation than Φ(u), since if u and X are

bound to the same summary node the equality X = u will only evaluate to unknown.

Instead, then, our translation of literals uses a large number of cases; for instance,

instead of a single rule for forming (t = t′)†, we have a number of rules depending

on the specific forms of the terms t and t′. For example, if x and y are program

variables in the procedure π, and f is a field, then (x = y)† is

∀o(pi C Var[x](o) ↔ pi C Var[y](o))

and (f(x) = 0)† is

(
∃o(pi C Var[x](o) ∧ ¬∃o′C Field[f](o, o′))

)
∨

(
(∀o(pi C Var[x](o) → ¬∃o′C Field[f](o, o′))) ∧ unknown

)

In the second of these, we use unknown because we don’t want to say anything about

4.5. Implementation of shape analysis module (tvla) 170

what happens when x is null. Frequently, as in this case, the translation has the

structure

(sufficient condition) ∨ (necessary condition ∧ unknown)

which allows both falsifying and establishing the condition.

While it is irritating to have to implement such cases for literals by hand, we found

that it does give much better results. Transitive closure subformulae are treated

in a similar way. Any subformula for which there is no translation rule, such as

one formed from a quantifier that is not appropriately “guarded” by an allocation

predicate, is simply translated to unknown; while imprecise, this is always sound.

Coercion Once we have obtained by translation a formula in TVLA’s internal

logic, it is applied to the abstract heap using the coercion operation detailed in

[SRW99]. The formula is transformed into a set of coercion rules, each of the form

Body B Head

where Body can be any formula but Head can only be an atomic formula or the

negation of an atomic formula. Free variables are taken as universally quantified. If

Body evaluates to true in the abstract heap, but Head evaluates to false, the heap can

be thrown away. Alternatively, if Body evaluates to true and Head to unknown, the

heap is altered to force the Head part to be true, by “sharpening” some predicates

from unknown to a definite value.

As in other applications of TVLA, our module also uses a set of coercion rules to

encode some basic facts about heaps. For instance the rule

p 6= q ∧ pi C Var[x](p) B ¬pi C Var[x](q)

reflects that fact that a program variable cannot simultaneously point to two distinct

4.5. Implementation of shape analysis module (tvla) 171

procedure share(a, s, π)

var F : L {0,1,C} set
var Φ : L {0,1,C}

F := Candidates(s, π)
Φ := true

while F 6= ∅ do

choose Ψ ∈ F
F := F − {Ψ}

if succ(a, s, π, ¬Ψ) = ∅ then
Φ := Φ ∧Ψ

end if

end while

return Φ

end procedure

Figure 4.7: By exploiting Φ 7→ Φ†, our translation to TVLA’s internal logic from L ,
we can do the reverse, i.e. extract information from TVLA back into the common
logic L . The procedure Candidates suggests candidate formulae for sharing. This
scheme will also work for any similar translation.

objects.

4.5.5 Providing shared formulae

In this subsection we explain a method for extracting a set of L -formulae which

are entailed by a given abstract heap. These formulae can then be passed to other

modules via the share function.

Existing work such as [Yor03] could be exploited for extracting first-order formulae

directly from abstract heaps. But because our hector system is a prototype, we

instead apply a cheap trick which reuses the translation from L into TVLA to

induce transfer of information in the other direction. This quickly gives us a usable

implementation with little work.

4.5. Implementation of shape analysis module (tvla) 172

Our method is given in Figure 4.7. The idea is to generate, independently of the

abstract heap, a set of candidate formulae which we consider propagating to the

other modules. Then, to test whether a candidate formula Ψ is really entailed by

the abstract heap, we run succ, putting in the negation of Ψ. If succ returns no

successors, this indicates that ¬Ψ contradicted the abstract heap, and therefore Ψ

is entailed by the abstract heap. We gather up all candidates which are shown to

be entailed in this way, and return their conjunction.

This still leaves the question of how one obtains the candidates. We mentioned

earlier that the candidates are generated from patterns given as part of the configu-

ration. Without going into detail, we mention that such patterns are specified using

a small subset of Prolog, so that for instance the pattern

neq(U, V) : var(U), var(V), U < V

generates, without unnecessary repetition, all potential disequalities between pro-

gram variables. Of course “singleton” patterns, which directly and fully specify a

formula, can be used in the configuration if it is known exactly what should be

considered for sharing.

It is worth pointing out that the method we use here, and the machinery we created

for specifying patterns of candidate formulae, can be applied unchanged to any other

analysis module.

4.6. Implementation of a simple type system module (types) 173

4.6 Implementation of a simple type system mod-

ule (types)

4.6.1 A simple type system for heap references

We begin by presenting a simple type system which identifies variables which hold

heap references. Although our variables and fields all contain integer values, we can

broadly classify them according to their use: some are used to store integer data

values, and some are used to store the addresses of heap objects. We have designed a

simple type system which tries to distinguish these two uses. This system classifies

each variable and field as having either the type Any (for data) or the type Ref

(for heap addresses). Variables/fields of type Any can hold any value, whereas

variables/fields of type Ref must contain either the address of an allocated heap

object, or 0 i.e. null. Variables which store addresses calculated by pointer arithmetic

must be conservatively typed as Any; values can flow from Ref to Any but not vice

versa.

We will need a notion of a type assignment Γ. Conventionally Γ would be formalised

as a function from variables/fields to types, but because our type system is so simple,

we can take a type Γ to be the set of variables and fields which are given the Ref

type.

Definition 4.6.1. A type assignment Γ is a subset

Γ ⊆ Fields ∪ (ProcNames× Vars)

A program P is well-typed by a type assignment Γ if the following conditions hold,

for every statement s which labels an edge in a procedure π ∈ Procs(P):

� If s has the form VarCopy(u, v) : n then (π, u) ∈ Γ =⇒ (π, v) ∈ Γ.

� If s has the form AssignConst(u, k) : n then either k = 0, or (π, u) /∈ Γ.

4.6. Implementation of a simple type system module (types) 174

� If s has the form Arith(u, v1,⊗, v2) : n then u /∈ Γ.

� If s has the form FieldRead(u, v, f) : n then (π, u) ∈ Γ =⇒ f ∈ Γ.

� If s has the form FieldWrite(v, f, u) : n then f ∈ Γ =⇒ (π, u) ∈ Γ.

� If s has the form Call(u, π′, [a1, . . . , ak]) : n then, letting [p1, . . . , pk] be the

formal parameters Formals(π′), for i = 0, . . . , k we have (π′, pi) ∈ Γ =⇒

(π, ai) ∈ Γ. Also, letting r be the variable returned in π′, we have (π, u) ∈

Γ =⇒ (π′, r) ∈ Γ.

Informally, these conditions prevent any opportunity for values to flow from a vari-

able/field of type Any into one of type Ref.

The following theorem concerns the behaviour of well-typed programs; it guarantees

that at all stages of execution, variables which are typed Ref really do contain either

0 or an allocated heap address, and similarly for fields.

Theorem 4.6.2. Let the program P be well-typed by the type assignment Γ, and

let execution in P reach a state s = (e, h, A) in procedure π, i.e. π, s0
p−→ l, s. Then:

1. For each variable v in procedure π (i.e. v ∈ Formals(π) or v ∈ Locals(π)), if

(π, v) ∈ Γ (i.e. v has type Ref) then either e(v) = 0 or e(v) ∈ A.

2. For each field f ∈ Fields(P), if f has type Ref (i.e. if f ∈ Γ) then, for all

a ∈ A, either h(f, a) = 0 or h(f, a) ∈ A.

Proof: The proof is straightforward and is omitted for brevity. Proceed by induction

on the number of steps in the derivation of π, s0
p−→ l, s.

4.6.2 Turning our type system into an analysis module

We can now turn this type system into a module types which can be used in our

cooperative analysis. When the module is first loaded, it runs a simple type inference

4.6. Implementation of a simple type system module (types) 175

scheme over the entire target program, to find a type assignment ΓP that well-types

the program P . Thereafter, apart from share, its functions have nothing to do:

T := {Um}

γ(Um) := State× State

succ(a, s, π, Φ) := {Um}

succC(a, π, π′, [a1, . . . , ak]) := {Um}

succR(a, a′, π, π′, x, r, [a1, . . . , ak]) := {Um}

init(·) := {Um}

When invoked, share looks up the in-scope variables in the pre-computed type as-

signment ΓP and supplies a formula which appropriately constrains each Ref-type

variable or field. Specifically, for each procedure π ∈ Procs(P) we define a formula

constraining its Ref-type variables

Φ(π) :=
∧

(π,v)∈Γ

(v1 = 0 ∨ allocd1(v1))

plus a formula to constrain the fields:

Φ(fields) :=
∧
f∈Γ

∀X(allocd1(X) → (f1(X) = 0 ∨ allocd1(f1(X))))

Then share is defined by

share(a, s, π) := Φ(π) ∧ Φ(fields)

The reader may wonder why this module is sound — the information it shares cer-

tainly isn’t entailed by the abstract value, as there is only one, namely ‘Um’, and

it conveys nothing. The reason is the “non-locality” in the soundness conditions,

which we noted in Subsection 3.4.3: in each of the soundness conditions in Defini-

4.6. Implementation of a simple type system module (types) 176

tion 3.4.3, there is a premise π, s0
l,s−→ l′, s′, which ensures that the concrete state

being considered is actually reachable. This is precisely the condition needed in

Theorem 4.6.2 to obtain the result we need.

4.6.3 Additional types and type inference

The types module we implemented features additional types: bool for Boolean

variables (which take value 0 or 1), nneg for non-negative integers, and null for

variables which never change their value from the initial null.

types uses a type inference algorithm to automatically discover the best types for

variable and fields. Type inference was implemented in a relatively straightforward

way using SWI Prolog’s constraint programming features.

Remarks Everything provided by the above type module can also be obtained

using predicate abstraction with suitable predicates. However, the type system

module works more efficiently: it performs a cheap static program-wide check once,

rather than causing the theorem prover to do extra work at every iteration.

Our module types is fairly simple, though nevertheless it is useful (as we see in Sec-

tion 5.4). It also serves to demonstrate how type systems can fit into our framework.

It would be interesting to add non-null reference types as in the Cyclone language

[JMG+02]. Another possibility is to add one of the ownership type systems referred

to in Subsection 2.5.3 (from page 68).

4.7. Implementation of two further shallow domains 177

4.7 Implementation of two further shallow domains

4.7.1 Symbolic constant propagation (symbprop)

The fact that our target language has such a small set of statement forms tends to

hamper the use of predicate abstraction. Suppose we are using a single abstraction

predicate P1 , x = a+ b+ c. After the execution of the statement x := a + b + c

the analysis will establish P1. But if we implement the same operation in our minimal

language, using two statements x := a + b; x := x + c, then afterwards P1 will

not be established; the reason is that the information that x = a + b is lost between

the statements. To overcome this, an extra abstraction predicate P2 , x = a + b

must be introduced. In general, when using the minimal language a great many more

abstraction predicates are required. Other domains become similarly impeded.

Symbolic constant propagation [Min06, LF08] was designed to combat this phe-

nomenon, by propagating obvious information, such as the x = a + b above, a

short distance forward in the analysis. We will not describe the details of our mod-

ule symbprop, but note that in the above example, it generates the constraint

x = a + b and carries it through the analysis until one of the variables involved is

modified. Guards of If edges are carried forward in a similar way.

symbprop is very cheap because it never invokes a theorem prover; constraints

are abandoned as soon as there is a modification to one of the variables or fields

involved. (By “modification” we mean the variable or field appears on the left of an

assignment. We do not care whether the value actually changes; it is enough that

there is syntactically a potential change.)

4.8. Optimisations 178

4.7.2 Tracking of heap references (refs)

Our refs module provides simple tracking of heap references. Each tracked variable

is classified as either ‘null’, ‘ref’ (a valid heap reference) or ‘other’. This domain

is an invention of our own, but there is nothing cunning about it. The implemen-

tation follows the same pattern as that of sign analysis, including the three-valued

interpretation of formulae received from other modules.

4.8 Optimisations

As stated earlier, we have not made a serious attempt to make hector run quickly.

Nevertheless, we have made a few obvious optimisations, which we now briefly de-

scribe.

Indexing of formulae and caching of theorem prover results Inside hec-

tor, formulae of the common logic L are passed from one piece of Prolog code

to another very frequently, and some of these formulae become very large. Hence,

rather than pass around the formulae themselves, we store all the “active” formulae

in a table, and use their indices as the representation. Conjunctions of formulae are

represented as ordered lists of indices, and conjunction is implemented as an ordered

merge.

Using indices also makes it easy to cache the results of theorem prover calls. This is

especially important because when another module causes branching, the predicate

abstraction modules often make identical theorem prover calls in each of the resulting

branches.

Early detection of inconsistency When computing succ for a combination of a

number of modules, the näıve algorithm, after collecting shared formulae, computes

4.9. Visualisation features and web interface 179

successors in each module, and then forms the Cartesian product of the results.

However, as soon as any one of the modules returns an empty set of successors, we

know that the overall Cartesian product will be empty too, and there is no need

to invoke succ for the remaining modules. With this optimisation the operator � is

no longer commutative in terms of efficiency, and certain orderings of the modules

may be better than others.

Shared formulae are not passed back to their originators In the definition

of succ� (in Definition 3.6.1) each module’s successor function is passed the shared

information share�((a1, a2), s, π) — but this includes, as a conjunct, the information

provided by that module itself. This is useless, because each module “already knows”

the information it provided, and cannot benefit from being told it again, so we

filter out such formulae. However, disabling this optimisation functions as a useful

and simple sanity check: if a module is found to be making use of its own shared

information, then there is a bug in that module.

Caching of path information In the return-step part of our model extraction

algorithm (Algorithm Fragment 3.5), we need to repeatedly look for paths from the

called procedure’s entry point to its return point. Searching the model each time

causes a tremendous slowdown, so we have devised a scheme to cache information

about these paths, invalidating the cached information when necessary.

4.9 Visualisation features and web interface

For ease of use, abstract models built by the user are accessed through a web browser

interface. The models appear as icons in a hierarchy of folders (Figure 4.8). By

clicking on a model, the user can either draw that model (or part thereof), or model

check it.

4.9. Visualisation features and web interface 180

Figure 4.8: Web browser interface through which models are accessed.

4.9.1 Drawing features

Figure 4.9 shows the part of the web interface where drawing options are selected.

hector can produce six kinds of drawings of models, of which we will demonstrate

three.

� Control flow graphs only. Here, as with all the types of drawing, the user

can specify which procedures should be included. Figure 4.10 is hector’s

drawing of our by now familiar square root program.

� Outline view. This draws the abstract nodes alongside the CFGs, and the

transitions between them, but doesn’t show the abstract values associated with

each abstract node. See Figure 4.11.

� Full abstract states. See Figure 4.12. Here each abstract node is drawn

“boxed in” with a depiction of the abstract values for each of the analysis

modules in use (here, only compsigns). The user can choose to hide the

components from particular analysis modules.

4.9. Visualisation features and web interface 181

Figure 4.9: Part of the web interface where options for drawing models are selected.

Figure 4.10: Control flow graphs of our square root program, as automatically drawn
by hector.

4.9. Visualisation features and web interface 182

Figure 4.11: Outline view of a model, as automatically drawn by hector. Inter-
procedural edges are distinguished by their salmon colour.

Figure 4.12: Full view of the procedure chooseNat, as automatically drawn by hec-
tor.

4.9. Visualisation features and web interface 183

Figure 4.13: Part of the web interface where model checking options are selected.

hector invokes the dot software [GN00] to draw these graphs. The drawing of ab-

stract values is modular too: each analysis module provides a predicate visualise/4

which renders a given abstract value as a dot subgraph. This is useful for the tvla

module, which needs to draw its own nodes and edges.

4.9.2 Model checking features

Figure 4.13 shows the part of the web interface where model checking options are

selected. hector can search for traces of various kinds. In terms of verification,

the interesting option is the first one, “Absence of memory errors and assertion

violations”, which looks for paths to the special asserterror and memerror nodes. If

this check finds no paths, then the program is verified.

Other options are used to explore the model. Using the “unreachability of location”

option we can, for example, search for a trace to the return point (node 3) of the

4.9. Visualisation features and web interface 184

Figure 4.14: hector’s drawing of an abstract counterexample trace. (Such traces
may in general be infeasible, that is, not correspond to any execution of the concrete
program.)

4.10. Summary 185

intSqrt procedure. The result is shown in Figure 4.14. Note how the abstract nodes

in intSqrt are labelled with components for both compsigns (sign analysis) and

tpa (trivector predicate abstraction). Each analysis module uses a different colour

to display its abstract values.

Note that traces which are returned in this way are traces through the abstract

model, and aren’t guaranteed to correspond to an execution in the concrete pro-

gram; we discussed this on page 44. Currently the user needs to work out whether

counterexamples are real (“feasible”) or not.

There are two further things of note in Figure 4.14. Firstly, at the entry point of

intSqrt, hector shows us that sharing proved useful: the useful shared formulae

are shown, together with the module that provided them (in this case compsigns)

and the module that used them (in this case tpa). Such sharing information can

be hidden if desired. Secondly, the trace “skips over” the call to chooseNat, taking

the summary edge instead (because this is the shortest route). The option “expand

procedure calls in trace” allows us to look inside such calls when required.

4.10 Summary

This chapter described our experimental software model checker hector which

implements the module-based verification framework developed in Chapter 3.

We began by outlining the overall architecture of our software, which is written in

Prolog, and then detailed how we implemented seven verification/abstraction tech-

niques as analysis modules. These seven are a diverse range of points in the “design

space” of verification/abstraction techniques: two kinds of predicate abstraction,

a three-valued shape analysis, a type system, symbolic constant propagation, sign

analysis and heap reference tracking.

We concluded the chapter with an account of the visualisation features of hec-

4.10. Summary 186

tor, which are accessed through a web interface, giving examples of the kinds of

customisable graphical output that the tool can produce.

In the next chapter we will put our hector implementation to good use, conducting

a case study to explore the benefits of automatic modular domain combination.

Chapter 5

Case study

5.1 The MineSweeper game

For our case study, following [LR07], we use hector to verify some properties of

an implementation of the popular puzzle game MineSweeper (shown in Figure 5.1).

We give a brief description of the game. The game is played on a grid of cells,

some of which contain mines. When the game begins, all cells are unexposed, with

a number of mines randomly distributed across the grid (Figure 5.1 left). By left-

clicking an unexposed cell, the player exposes it. If the newly exposed cell is mined

the game is over and the player loses; otherwise the game continues. The player

wins by exposing all the unmined cells. Unmined exposed cells display the number

of mines in adjacent cells (the adjacency count, Figure 5.1 right), and using this

information the player decides which cells are safe to expose. If the player deduces

that an unexposed cell contains a mine, he may mark that cell by right-clicking

it. Marked cells, which are displayed with a flag, cannot be exposed (left-clicking

them does nothing) which prevents accidental left-clicking. A marked cell can be

unmarked by again right-clicking it. Finally there is a button (labelled with a face

in Figure 5.1) which ends the game and begins a new one; when the game is over,

187

5.2. Our implementation of MineSweeper 188

Figure 5.1: The MineSweeper puzzle game, an implementation of which we verify.

this is the only button that has any effect.

A subtlety of the game is that each cell is automatically exposed if one of its neigh-

bours becomes exposed and has an adjacency count of zero; clearly an automat-

ically exposed cell cannot contain a mine. Automatic exposure spares the player

the tedious task of clicking all the neighbours of cells displaying zero. Note that

automatically exposing a cell may trigger further automatic exposures, so that a

single left-click might expose in one go a large mine-free region of the grid.

5.2 Our implementation of MineSweeper

Our implementation of MineSweeper works with arbitrarily large game boards, and

consists of 356 program statements across 24 procedures. Together with the 48

required declarations (for fields, procedures, and shorthand formulae) and a few

comments, this gives an input file of about 800 lines. We chose it for our case study

because it uses all the main features on which we would like to test hector: as

we will see, the implementation uses linked data structures, pointer arithmetic and

recursion. In particular, the program is verifiable neither by first order predicate

abstraction alone (because it contains reachability assertions), nor by TVLA alone

5.2. Our implementation of MineSweeper 189

(because it uses pointer arithmetic). The program was prepared principally by

translating into hector’s input language, by hand, the publicly available source

code used for the case study from [LR07].

5.2.1 The Model-View pattern

As in [LR07], the idea is that our implementation is split into a Model part and a

View part, as per the popular design pattern. The Model part represents the board in

memory using a table i.e. a two-dimensional array. Each table entry records whether

the cell is mined, whether it is marked, whether it is exposed, and the number of

adjacent cells containing mines. The View part uses a linked list structure to keep

track of the cells it is displaying to the user; the idea is that whenever the Model part

exposes a cell, it should “notify” the View part, by invoking a particular procedure.

Thus, an important property for us to verify is consistency between the Model and

the View, i.e. that the cells in the list of those being displayed to the user are exactly

those recorded in the table as being exposed.

(Note that our idealised target language doesn’t include any features for modules

or information hiding, so that a certain amount of imagination is required to see

the boundary between the Model and the View. This is one of the disadvantages of

choosing a simplified target language.)

5.2.2 Structure of implementation

Figure 5.2 shows the procedure call graph for our case study program. As usual, self-

loops indicate recursive procedures. Generator procedures, as described on page 84,

are used to non-deterministically generate all possible distributions of mines, for

all grid sizes, and all sequences of user actions. This ensures that every possible

situation is considered. In Figure 5.2 the generator procedures are indicated by

italic names. The role of each procedure is as follows:

5.2. Our implementation of MineSweeper 190

Figure 5.2: Procedure call graph for our case study program. As usual, recursive
procedures are shown with a self-loop. Italic names indicate generator procedures,
which use the Choice statement.

main This is the program’s main procedure. At the top level, the program sits in

an event-handling loop, repeatedly requesting an event object, which encodes

the user’s next action, and then invoking the appropriate procedure to process

the event.

get event Generates an event object, which records the details of the user’s next

action: which cell of the grid the user clicked, and with which mouse button.

board init Sets up the grid for a new game (in all possible ways, nondetermin-

istically), starting with all cells unexposed and unmarked.

board laymines Distributes a given number of mines across the grid, nondeter-

ministically in all possible ways.

set adj counts Once the mines are distributed, this procedure iterates across

the grid, correctly setting the adjacency count for each cell.

adj count Determines and returns the correct adjacency count for a given grid

cell.

handle right click Handles right-click events, marking and unmarking grid cells

as appropriate.

5.2. Our implementation of MineSweeper 191

handle left click Handles left-click events, exposing unmarked cells when they

are left-clicked, and invoking automatic exposure as needed. This procedure

records the appropriate cells as exposed in the Model’s table representation,

and then calls list add to add them to the View’s list of displayed cells. If the

user has exposed a mined cell, this is noticed here, and the game is declared

over.

clear spaces Performs automatic exposure of cells as described earlier, again

updating both the Model’s table representation and the linked list used by the

View.

has zero neighbour Determines, for a given grid cell, whether any of its neigh-

bours are exposed with a zero adjacency count (and thus whether the cell

should be automatically exposed).

list add Given a linked list and a heap object, appends the object to the end of

the list. The object should not be in the list already.

list add sub An auxiliary procedure for list insertion.

Dir neighbour The procedure left neighbour returns, for a given cell, that cell’s

left neighbour in the grid, or null if no such neighbour exists (because the cell

lies on the left edge). Similar procedures right neighbour, top neighbour etc.

exist for the other seven directions.

choose nat Nondeterministically generates and returns all natural numbers.

choose pos Nondeterministically generates and returns all positive integers.

choose nat limit Nondeterministically generates and returns all natural num-

bers up to a given limit.

table lookup Computes, for a two-dimensional array, the memory address of

the entry corresponding to given row and column numbers.

5.2. Our implementation of MineSweeper 192

5.2.3 Properties we verify

What properties of the implementation should we prove? Obviously we wanted

to show that our program doesn’t cause memory errors (such as accessing unallo-

cated storage), and hector always looks for such errors. Additionally, however,

we wanted to prove some properties which make sense at the level of the application

and its concepts. We added these as assertions. For instance, in the program’s main

loop we assert that

gameover = 1 ↔ ∃X.cell(X) ∧ isMined(X) = 1 ∧ isExposed(X) = 1 (5.1)

i.e. that the game is recorded as being over exactly when some mined cell has been

exposed. Here we have used hector’s shorthand mechanism, where we define

cell(X) to be shorthand for

X ≥ board ∧ X < board + (size× size)

which expresses that X is found somewhere in the table representing the game

board1. (Recall that our shorthand mechanism is purely cosmetic and does not

allow one to introduce inductively defined predicates.) We also assert consistency

between the Model and the View by

∀X.
(
(cell(X) ∧ isExposed(X) = 1) ↔ listElem(X)

)
(5.2)

where the shorthand listElem(X) uses transitive closure to express membership of

X in the linked list maintained by the View:

TC[A,B]

[
allocd(A) ∧ allocd(B) ∧ next(A) = B

]
(explist, X)

1The prover Simplify really isn’t an oracle, and is defeated if we instead use the following
equivalent definition ∃R∃C.

(
R ≥ 0 ∧ C ≥ 0 ∧R < size ∧ C < size ∧X = board + (R× size) + C

)
.

5.3. Verification using all analysis modules 193

These high level properties are similar to those verified in [LR07].

But in addition to high-level assertions such as (5.1) and (5.2), we also annotated

most of our procedures with assertions at their start and end. For example, for the

procedure list add which appends the parameter newelem to the given linked list,

at the beginning we assert allocd(newelem) and at the end we assert

∀X.allocd(X) ↔ allocd0(X) ∧ ∀X.reachable(X) ↔
(
reachable0(X)∨X = newelem

)
(where reachable and reachable0 are suitable shorthands using transitive closure)

which says that during execution of list add, no new memory was allocated, and

the objects in the list at the end are exactly those at the beginning plus the new

element.

Annotating each procedure in this way is to a degree redundant, because if some

utility procedure doesn’t work properly, then this will be reflected by a high-level

failure of the overall program. However, we found the extra annotations very useful,

because they help to localise the cause of reported errors (be they real or artifacts

of abstraction); rather than looking at a counterexample trace showing a high-

level failure of the program, and having to work out the cause, we are given a

trace ending very soon after something has gone wrong. This helped immensely

during the iterative (human-powered) refinement of the configuration of the analysis.

Furthermore, such annotations can be reused if the procedure is reused in a new

program.

Overall, breaking the assertions into their top-level conjuncts, we ended up with 43

conditions to verify. Recall that these properties are verified for all finite sizes of

the game board, however large.

5.3. Verification using all analysis modules 194

Guess an appropriate configuration C
while true do

Extract model M from program using C
if program is verified by M then

return “program is correct”
else

Read off counterexample trace T from M
if T is real error then

return “program is faulty, as witnessed by T”
else

By looking at T determine why configuration C is insufficient
Improve C to eliminate T

end if
end if

end while

Figure 5.3: The abstract-check-refine loop. Using this process, one hopes to even-
tually arrive at a configuration sufficient to verify the program.

5.3 Verification using all analysis modules

We verified our case study program (all 43 conditions) by using six of the seven

analysis modules implemented in hector. As mentioned earlier, we developed

our model iteratively, essentially following the process shown in Figure 5.3. This

activity is called the abstract-check-refine loop (e.g. [HJMS02]). (We stress that,

at each stage, the formulation of the improved configuration was done by hand;

the later Subsection 7.3.2 discusses the prospects of adding automated abstraction

refinement to hector.)

In this way, we repeatedly improved the configuration of the analyses until we ob-

tained a configuration which verified all 43 of the asserted properties.

Figure 5.5 summarises this final configuration, as well as the verification run. Fig-

ure 5.4 shows an abstract state from this verification, with a component for each of

the six analysis modules.

5.3. Verification using all analysis modules 195

Figure 5.4: An abstract state from our verification, with a component for each of the
six analysis modules. From left to right these are: compsigns, tpa, symbprop,
refs, types and tvla
.

5.3. Verification using all analysis modules 196

No. shared No. used %
tvla 115 14 12.17
types 24139 513 2.13
refs 4830 39 0.81
symbprop 12205 258 2.11
tpa 21201 148 0.70
compsigns 2855 27 0.95
Total 67294 999 1.48

P
ro

v
id

in
g

m
o
d
u
le

Listening module

tv
la

ty
p
es

re
fs

sy
m

b
p
ro

p

tp
a

co
m

p
si

gn
s

tvla X14

types X16 X504 X1

refs X24 X10 X5

symbprop X30 X16 X222

tpa X50 X98

compsigns X12 X17

Summary of configuration

tpa
Abstraction predicates 123
compsigns
Variables tracked 30
refs
Variables tracked 38
tvla
Variables tracked 11
Fields tracked 1
Instrumentation predicates 5
Sharing patterns 2
Focus declarations 2

Total 212

No. of states in model: 2076
Time to extract model: 374 seconds

Figure 5.5: Summary of the verification using all six analysis modules. The middle
table shows, with ticks, between which combinations of modules sharing proved
beneficial during extract-model; the numbers on the ticks indicate how many
shared formulae were useful.

5.3. Verification using all analysis modules 197

No. shared No. used %
tvla 115 14 12.17
tpa 28886 78 0.27
Total 30504 92 0.30

P
ro

v
id

in
g

m
o
d
u
le Listening module

tv
la

tp
a

tvla X14

tpa X78

Summary of configuration

tpa
Abstraction predicates 292
compsigns
Variables tracked 0
refs
Variables tracked 0
tvla
Variables tracked 11
Fields tracked 1
Instrumentation predicates 5
Sharing patterns 2
Focus declarations 2

Total 313

No. of states in model: 1631
Time to extract model: 437 seconds

Figure 5.6: Summary of the verification using only two of the analysis modules.
Because we did not exploit all of our analyses, the time taken for model extraction
is longer, and the amount of user configuration required is substantially higher.

5.4. Comparison: verification using two modules only 198

5.4 Comparison: verification using two modules

only

For purposes of comparison, we also verified the same program (again all 43 con-

ditions) using a model constructed with only two of hector’s analysis modules,

namely those for shape analysis and trivector predicate abstraction. The configura-

tion used, along with the resulting verification, is summarised in Figure 5.6.

We can see that, as we hoped, the model built using all analysis modules required

much less configuration (i.e. much less user guidance), and the model was built in

a shorter time. Specifically, the model extraction time was cut by 64 seconds, a

reduction of 14%. 101 fewer configuration items were needed, a reduction of 32%.

The increase in speed occurs because the additional analysis modules provide spe-

cialised, streamlined mechanisms for reasoning about certain properties e.g. refer-

ences, signs of integers etc. and thus avoid the relatively expensive theorem prover

calls which predicate abstraction uses. This is particularly true of the type system

which, instead of doing more work at each successor computation, requires only a

single flow-insensitive analysis of the program.

The decrease in user input required is mainly due to the type system and symbolic

constant propagation modules. The type system module needs no configuration

because it performs type inference, and the symbolic constant propagation module

likewise automatically identifies properties that are likely to be of use.

Obviously we have shown such an improvement only for a single target program,

but because hector automatically generates summaries of the kind shown in Fig-

ures 5.5 and 5.6, we have the necessary machinery in place to support a thorough

investigation of this effect.

(When we compare the total configuration sizes, we are implicitly assuming that

each kind of configuration item is equally difficult for the user to provide. We do

5.4. Comparison: verification using two modules only 199

this for simplicity, but it probably isn’t exactly the case; e.g. in general writing an

abstraction predicate is more taxing than naming a variable for the sign analysis

to track. In any case, our conclusion is not threatened: if the six-module verifi-

cation requires less configuration when treating each item with equal weight, this

will be even more the case if we give lower weights to the simpler configurations for

compsigns and refs.)

Comparison: our case study vs. Hob case study

In [LR07], an implementation of MineSweeper is used as a case study for the Hob

verification system. We will discuss the Hob system in general in Subsection 7.2.2,

and compare it with hector, but for now we make some brief remarks concerning

the two systems’ respective verifications of MineSweeper.

The MineSweeper implementation we have used was obtained by translating into

hector’s input language, by hand, the publicly available source code from the

Hob case study. The properties we verify are very similar to those verified using

Hob. The Hob system [KLZR05, LKR05] also allows different analysis techniques

to cooperate in order to verify a program, but the mechanism by which domains

interact is quite different. In particular, with Hob each procedure is analysed by a

single domain; the domains interact only at procedure boundaries. In such a system

the opportunities for the domains to improve each others’ results are limited, and

one cannot make beneficial use of shallow domains as we do in hector. The Hob

verification uses PALE (discussed on page 64), rather than TVLA, to perform the

shape analysis.

5.5. Some interesting uses of propagation 200

5.5 Some interesting uses of propagation

In this section we highlight some of the situations, observed in our verifying models,

in which the propagation of formulae between the analysis modules plays a crucial

role. To simplify the presentation, we will focus on the two-module model, and

thus restrict ourselves to interactions between the predicate abstraction and shape

analysis modules; as Figure 5.5 shows, in the six-module model there are interactions

between many pairs of modules. Also, we will only present a high-level “story” of

what the sharing achieves, and will omit much of the detail.

We consider the following scenario of MineSweeper play.

1. A game is in progress. In the event-handling loop in ‘main’, the procedure

‘get event’ is called to return the player’s next action.

2. The returned event turns out to be a left-click, so ‘handle left click’ is called,

passing as parameters the grid coordinates of the clicked cell.

3. ‘handle left click’ calls ‘table lookup’, which performs pointer arithmetic, to

get the table entry for the clicked cell.

4. The clicked cell turns out to be unmarked and unexposed, so ‘handle left click’

exposes it (in the Model’s table) by setting the ‘isExposed’ field to 1.

5. The newly exposed cell must now be added to (the View’s) linked list of cells

to display, which ‘handle left click’ does by calling ‘list add’.

6. ‘handle left click’ now calls ‘clear spaces’ to perform any necessary automatic

exposure of cells, but none is needed.

7. ‘handle left click’ returns, passing control back to the event-handling loop in

‘main’, ready for the player’s next action.

5.5. Some interesting uses of propagation 201

Figure 5.7: The abstract state at the beginning of our scenario.

Figure 5.7 shows one of the abstract states occurring at the start of the event-

handling loop, as drawn by hector. In this particular state, we see that the linked

list contains exactly one element (not counting the dummy head node); the summary

node represents all of the rest of the heap. Here dataStructuresMatch is shorthand

for the consistency property (5.2) (page 192).

Figure 5.8 shows the abstract state reached in ‘handle left click’, just before the invo-

cation of ‘table lookup’. Notice that the predicate abstraction component contains,

among others, the following facts:

1. x < size

2. y < size

3. x ≥ 0

4. y ≥ 0

5. ∀X.cell(X) → allocd(X)

The first four of these say that x and y are in the right range to be grid coordinates,

and the fifth records that the memory range corresponding to the Model’s table is

all allocated. It is these facts which allow the predicate abstraction to determine

5.5. Some interesting uses of propagation 202

Figure 5.8: An abstract state encountered during our scenario, just before ‘ta-
ble lookup’ is invoked to compute (using pointer arithmetic) the address of the
table entry for the clicked grid cell.

Figure 5.9: An abstract state encountered during our scenario, after ‘han-
dle left click’ has examined the clicked cell and found it to be unmarked and unex-
posed; importantly, the predicate abstraction module has now established the fact
¬reachable(cell).

that, after the pointer arithmetic performed by ‘table lookup’, the address in the

variable cell is allocated.

In our scenario, ‘handle left click’ then examines the clicked cell and finds it to be

unmarked and unexposed; the abstract state after this is shown in Figure 5.9. Impor-

tantly, the predicate abstraction module has now established the fact ¬reachable(cell),

which is shorthand for

¬TC[A,B]

[
allocd(A) ∧ allocd(B) ∧ next(A) = B

]
(explist, cell)

This is derived as follows (informally): from dataStructuresMatch we see that cell

5.5. Some interesting uses of propagation 203

Figure 5.10: An abstract state encountered during our scenario, after the clicked
cell’s isExposed field has been set to 1, but before the cell has been added to the
linked list.

has its isExposed field set to 1 iff it is present in the linked list — but we have

just examined the isExposed field, and found it not to be 1. Note that although

this produces a fact involving TC, it doesn’t rely on any genuine TC reasoning;

our predicate abstraction module’s treatment of TC subformulae as uninterpreted

predicates suffices here.

Next, ‘handle left click’ exposes the clicked cell. Figure 5.10 shows the state after

the cell’s isExposed field has been set to 1 (for the Model) but before the cell has

been added to the linked list (for the View). The property dataStructuresMatch has

been broken, but instead the predicate abstraction module proves the fact

∀X.(cell(X) ∧ isExposed(X) = 1) ↔ (listElem(X) ∨X = cell)

The abstract state on entry to ‘list add’ is shown in Figure 5.11 (top half); the

object to be added, cell, is passed in via the newelemx parameter.

The first action of ‘list add’ is to copy the address from the variable newelemx, which

is ignored by the shape analysis and had its value computed by pointer arithmetic, to

the variable newlem which the shape analysis tracks. As explained in Section 4.5.2,

a pure shape analysis such as we use must in general “give up” when faced with

this situation, because arithmetic can give rise to values which are neither null nor

5.5. Some interesting uses of propagation 204

Figure 5.11: An abstract state encountered during our scenario, on entry to the
‘list add’ procedure. Here the predicate abstraction module provides a formula,
depicted above the downward arrow, which helps the shape analysis module.

5.5. Some interesting uses of propagation 205

a valid pointer (e.g. negative integers, unallocated addresses).

This is the first place where propagation between the analysis modules helps. Our

predicate abstraction module can provide the fact

allocd1(newelem1)

which enables the shape analysis to continue, treating newelem as a pointer that

can potentially point to any heap object. This is depicted in Figure 5.11 (bottom

half).

In the next successor step, the shape analysis module focuses the variable newelem

to find out exactly where it points. Without sharing, five possible heaps are gen-

erated, three of which would prevent a successful verification. However, informa-

tion propagated from the predicate abstraction module eliminates these problem-

atic heaps. The first is eliminated because it has newelem as null which contradicts

allocd(newelem), the second because it has newelem equal to the dummy list head

node which contradicts newelem 6= explist, and the third because it has newelem

already present in the list, which contradicts ¬reachable(newelem). This is shown

in Figure 5.12.

The auxiliary procedure ‘list add sub’ walks along the linked list until it finds the last

existing element, and then tacks on the new element with the statement curr.next

:= newelem. Figure 5.13 shows the abstract states before and after the execution

of the statement curr.next := newelem. We see that the shape analysis module

has propagated the formula

∀X.allocd(X) →
(
reachable(X) ↔ (reachble1(X) ∨X = newelem)

)
which expresses the fact that all objects that were in the list before the statement are

still in it, and additionally newelem is now an element. The predicate abstraction

module (which, recall, performs no reachability reasoning of its own) uses this fact

5.5. Some interesting uses of propagation 206

Figure 5.12: Part of an abstract state encountered during our scenario, in the
‘list add’ procedure. Here the predicate abstraction module provides three formulae,
listed above the downward arrow, which help the shape analysis module, allowing
it to return fewer successors.

5.5. Some interesting uses of propagation 207

Figure 5.13: Abstract states encountered during our scenario, respectively before
and after the statement curr.next := newelem which adds the new element to the
end of the linked list. Here the shape analysis module is “returning the favour”,
providing a fact about reachability that helps the predicate abstraction module.

5.6. Real counterexample for a false property 208

to establish

∀X.allocd(X) →
(
reachable(X) ↔ (reachble0(X) ∨X = newelem)

)
This second formula, which looks similar, expresses the effect on the list of all

statements since entry to the current procedure, and, when the call to ‘list add’

returns, will be essential in proving that the property dataStructuresMatch has been

restored.

5.6 Real counterexample for a false property

Originally we also included the following assertion in our program’s main loop:

¬∃X.cell(X) ∧ isExposed(X) = 1 ∧ isMarked(X) = 1

This says that there is never a cell which is both marked and exposed. This would

be true, we reasoned, because while a cell is marked left-clicking it has no effect and

thus one cannot expose the cell; on the other hand once a cell becomes exposed, it

cannot be subsequently marked because right-clicking it has no effect.

When we added this assertion to our configuration as an abstraction predicate,

hector gave us a counterexample, which we quickly concluded was a real error —

not in the program, but in the asserted property. The trace showed the property

holding up until a call to the clear spaces procedure, and failing to hold afterwards.

The clear spaces procedure performs automatic exposure as described earlier, which

we had overlooked, and this can indeed expose a marked cell, if one of its neighbours

becomes exposed and has a zero adjacency count.

5.7. Summary of case study 209

5.7 Summary of case study

In this chapter, we reported on our verification of an implementation of the well-

known MineSweeper puzzle game, which uses linked data structures, pointer arith-

metic and recursion. This program can be verified neither by conventional predicate

abstraction (which cannot handle linked structures) nor by TVLA shape analysis

(which doesn’t handle pointer arithmetic). We showed, however, that using hector

we could verify the program, because our predicate abstraction and shape analysis

modules work cooperatively. This is a good success for our approach and demon-

strates Benefit B1 from our Introduction.

Another success for hector is that when we also used our four lightweight modules

alongside those for predicate abstraction and shape analysis, the time taken to verify

the program substantially decreased, as did the amount of user guidance needed.

This demonstrates benefit B2.

The significance of our case study is that it shows that our approach can work in

practice, and that the benefits B1 and B2 of our approach are not merely things

which look good on paper — they really do happen.

Chapter 6

Additional model checking

features

In Chapter 4 we described features of hector which produce graphical output

— for instance these can display the model, or a specified part thereof, and draw

counterexample traces, and the output can be customised in various ways. These

features work well when dealing with toy example programs. While conducting

the case study of Chapter 5, however, we found that when the model has several

thousand states, even with these features it becomes difficult to find one’s way

around the model.

In this chapter we describe two extensions to the basic hector system which aim

to make dealing with large models easier:

1. Model checking for a safety fragment of LTL: We allow the user to find

traces they are interested in by specifying them in a temporal logic, namely a

“two-level” safety fragment of LTL.

2. Post-pruning of the model: Sometimes an abstract state is generated which

contains a “buried” inconsistency, which only “rises to the surface” after sev-

210

6.1. LTL model checking 211

eral further execution steps. We give an algorithm which traces such inconsis-

tencies back as early as possible, pruning away extraneous states.

We also describe a third extension:

3. Falsifying programs: The machinery developed in Chapter 3 allows us to

verify programs by showing that the error locations cannot be reached. Here

we develop a method, working on exactly the same abstract models, which

sometimes allows the falsification of programs too, by showing that an error

location is definitely reached.

Extension 3 doesn’t relate directly to the case study, and we planned it indepen-

dently; however, we include it here because it turns out to use exactly the same

underlying mechanism as Extension 2.

6.1 LTL model checking

A (linear) temporal logic is a formal language for specifying properties of execution

traces of a system. Typically the user writes a formula specifying the negation of

the kind of execution traces he is interested in, and enters this formula into a model

checking program. The model checker then either produces a trace of interest from

the system, or states that no suitable trace exists.

6.1.1 Our temporal logic

The temporal logic we use, which is a slight adaptation of syntactically safe LTL

[Sis94], is given by the following grammar:

Φ ::= Φ ∧ Φ | Φ ∨ Φ | XΦ | GΦ | ΦWΦ | atomic | ¬ atomic

6.1. LTL model checking 212

atomic ::= atLoc(π, l) | atNode(n) | inProc(π) | p

where p ∈ L . Such formulae are evaluated along execution paths. The connectives

∧,∨,¬ have their usual meanings. The temporal formulae XΦ, GΦ and Φ1WΦ2

mean, respectively: Φ is true at the next state of execution, Φ is true at all future

states, and Φ1 is true until Φ2 becomes true (or Φ1 is true forever — this is a weak

until). The above grammar builds only safety properties, that is, properties whose

falsity can be demonstrated by a finite execution trace.

What about the atomic formulae? It is suggested in [GJ02, YRS01] that, to apply

temporal logic to abstraction-based software verification, we should let the propo-

sitions of the language themselves be constructed according to an appropriate first-

order grammar; thus we allow any formula p from L to be used as a proposition.

We also add some propositions for “navigation” around the model: atLoc(π, l) is

true just when execution is at the location l of procedure π, atNode(n) is true just

when execution is at the abstract node with ID number n, and inProc(π) is true just

when execution is in the procedure π. (Note however that the above safety language

does not allow temporal connectives within the scope of a first-order quantifier, so

we cannot track a particular object from one state to the next. While this can be

done [YRSW03, Dis03] and is clearly sometimes a useful thing, it does make the

situation very much more complicated.)

Suppose we want to look at an execution in which, during the procedure ‘han-

dle left click’, the value of gameover changes from 0 to 1. Such an execution is

characterised by the LTL formula

F (inProc(handle left click) ∧ gameover = 0 ∧X¬gameover = 0)

which we can write in our fragment as the negation of

G(¬inProc(handle left click) ∨ ¬gameover = 0 ∨Xgameover = 0)

6.1. LTL model checking 213

Figure 6.1: An automaton generated from a temporal logic formula.

By invoking the existing ‘scheck’ software described in [Lat03], hector translates

temporal formula to automata on finite words. (In general LTL requires the more

complicated Büchi automata, but we are working only with safety properties so we

can, and prefer to, avoid them.) Figure 6.1 shows the automaton generated for the

above formula. The ‘scheck’ program never sees the first-order (i.e. L) subformulae

— hector replaces them with fresh proposition names before running ‘scheck’ and

then performs the inverse substitution on the resulting automaton.

We then perform model checking in a largely standard way — as described in [KV01],

conceptually, we incrementally compute the product of our model and the formula’s

automaton, and look for paths leading to the automaton’s accepting state. Figure 6.2

shows a suffix (the last four nodes) of the trace which hector returns for the query

above (showing only the tvla components). We emphasise that the “proposition”

gameover = 0 is not an abstraction predicate in the model; this is no problem for

the model checker.

6.1. LTL model checking 214

Figure 6.2: An execution trace found by hector in response to our temporal logic
query. (Here we have asked for the last four states only, and the components for the
tvla module only.)

6.1. LTL model checking 215

6.1.2 Evaluating arbitrary L -formulae in arbitrary abstract

states

We have so far omitted one important detail, however. When computing the product

of the automaton and model, one must be able to check, for some state n in the

model, whether n satisfies some formula Φ labelling an edge in the automaton —

this is how one decides which transitions in the product are possible and which are

not. In systems without abstraction, this can be done precisely. For instance, if the

model is an explicitly represented Kripke structure and the labels are propositional

formulae, one simply looks up the required propositions in the required model state

and evaluates. But in our case, the model’s states are abstract, and the edge labels

can include arbitrary formulae from the logic L , which is not even decidable.

Our approach is to reuse the formula sharing machinery we have already built, to

conservatively but imprecisely evaluate L -formulae in abstract states, as follows:

procedure Eval(a : T , π : ProcNames, Φ : L)

Succs := succ(a, Skip, π, Φ)

if Succs = ∅ then

return definitely-false

else

return maybe-true

end if

end procedure

Informally, we model a Skip statement, putting the formula Φ in as an extra con-

straint. If no successors are returned, this indicates that an inconsistency was de-

tected between Φ and the abstract state a, and thus Φ must be false in all concrete

states represented by a.

On the other hand, if some successors are returned, this does not guarantee the

existence of a concrete state represented by a and satisfying Φ, due to the over-

6.1. LTL model checking 216

approximating nature of the succ operation.

Running time of model checking The above evaluation procedure Eval, and

hence the whole model checker, can be quite slow; for instance, evaluating our exam-

ple query in the two-module model takes 126 seconds. This is still very favourable,

however, compared to the time it might take the user to find a suitable trace by

manual inspection of the model. We expect that formulae with more complicated

(e.g. quantified) “propositions”, such as

G
(
¬inProc(list add) ∨ ¬(∀X.allocd(X) → reachable(X))

)
will generally take longer to check.

6.1.3 Is our temporal logic checking procedure sound?

We believe that the model checking procedure outlined above is sound, in the sense

that if the model checking procedure cannot find a trace which satisfies a given

temporal formula Φ, then no such trace exists in the (concrete) program. We believe

this because it seems correct theoretically, and because our implementation seems to

behave as we would expect. We stress however that we haven’t yet done any of the

formal development needed to state and prove such a soundness result. (This result

would resemble Criterion 3.3.4, which proved that our method of showing particular

program locations unreachable is sound.)

Also left as future work is formulating a “thorough” semantics for LTL over our

abstract models; this problem is trickier than it first appears, and it is not clear

what form such a semantics should take.

6.2. Falsifying safety properties 217

6.1.4 Sources of loss of precision

Although we believe it to be sound, our model checking procedure is imprecise —

it can return counterexamples which either do not correspond to any execution in

the concrete program, or which correspond only to concrete executions which don’t

in fact falsify the temporal formula in question. There are four sources of this

imprecision:

1. As we saw in the previous subsection, our evaluation of the automaton’s guard

conditions is imprecise, returning either ‘definitely-false’ or ‘maybe-true’.

2. The transition relation we calculate between abstract states is over-approximate,

due to the over-approximate nature of succ.

3. Our abstract states may have empty concretisations, that is, may not corre-

spond to any concrete state.

4. For simplicity we treat the model as a plain transition system, rather than a

pushdown system, which means that we sometimes produce counterexample

traces in which the procedure calls and returns do not match up.

6.2 Falsifying safety properties

In this section we present a new method which allows the user to falsify safety

properties as well as verify them.

First, let us recall the basic idea which underlies the verification methods of hector

and systems such as SLAM [BR01] and BLAST [HJMS02]. Given a program, these

systems build a model which over-approximates the program: intuitively an over-

approximating model has all the behaviours of the original program, and possibly

many more. Hence, any “bad” behaviours present in the program are also present

6.2. Falsifying safety properties 218

in the model, and therefore if the model contains no bad behaviours, the program

does not either.

However, this scheme does not allow the falsification of safety properties, because

bad behaviours found in the model need not be present in the original program —

they may be “artifacts” introduced by the over-approximation process, and therefore

“not feasible” in the original program. Existing approaches to the falsification of

safety properties have focused on showing that abstract counterexamples are indeed

feasible, for example by:

1. searching for a corresponding concrete counterexample (e.g. [PDV01]),

2. proving the feasibility of the abstract counterexample path by satisfiability

checking (e.g. [BR01]), or

3. adding under-approximation or calculation of “must-transitions” to the model

(e.g. [GHJ01, GC06]).

The new falsification method we present here uses only over-approximating models.

In particular, our method doesn’t perform any of the tasks (1), (2), (3) listed above.

Instead, our method is inspired by generalised model checking (GMC) [BG00] and

exploits the seriality of programs, i.e. the fact that the execution of a program does

not just “stop” for no reason.

Remark 6.2.1. Seriality of concrete semantics. Let π, s0
p−→ l, s and let

Edges(Graph(π))(l) take any of the forms except Call and Return. Then there

exist l′, s′ such that π, s0
l,s−→ l′, s′.

Later, we will study the cost of our new falsification check and find that, although

it is potentially very imprecise, the check essentially “comes for free”, so we believe

it is a worthwhile feature.

6.2. Falsifying safety properties 219

6.2.1 H: a judgement for falsification

For falsification, our queries will be of the same kind as we used in Subsection 3.3.3

for verification: they will be given by a set B ⊆ ProcNames×Locs of “bad” locations,

and we wish to find out whether any of these locations are reached by the program,

i.e. whether

∃(π, l) ∈ B ∃s0, s, p π, s0
p−→ l, s

We introduce a new judgement Hπ, l, a, which we can think of as meaning “The

abstract node (π, l, a) is Hopeless”, i.e. once execution reaches (π, l, a) there is no

hope for avoiding forever the set of bad locations B. The named derivation rules for

this judgement are as follows (leaving the dependence of H on B implicit):

h-already-there

(π, l, a) ∈ N

(π, l) ∈ B

Hπ, l, a

h-choice-1

Edges(Graph(π))(l) = Choice : l′1 : l′2

∀a′ ∈ A , if (π, l, a)R(π, l′1, a
′) then Hπ, l′1, a

′

Hπ, l, a

h-choice-2

Edges(Graph(π))(l) = Choice : l′1 : l′2

∀a′ ∈ A , if (π, l, a)R(π, l′2, a
′) then Hπ, l′2, a

′

Hπ, l, a

h-call

Edges(Graph(π))(l) = Call(u, π′, [p1, . . . , pk]) : l′

∀a′ ∈ A , if (π, l, a)Rcall(π′, start, a′) then Hπ′, start, a′

Hπ, l, a

6.2. Falsifying safety properties 220

h-return

Edges(Graph(π))(l) = Return(v)

∀a′ ∈ A ,∀l′ ∈ Locs, if (π, l, a)Rreturn(π′, l′, a′) then Hπ′, l′, a′

Hπ, l, a

h-ord

Edges(Graph(π))(l) has any other form

∀a′ ∈ A ,∀l′ ∈ Locs, if (π, l, a)R(π, l′, a′) then Hπ, l′, a′

Hπ, l, a

The h-already-there rule says that, if execution is already at a bad location, then

trivially execution cannot avoid the bad locations forever. The rules h-call, h-return

and h-ord (for calls, returns and ordinary statements respectively) are based on

seriality: our abstraction does not tell us to which of the successors execution will

flow, but it must flow somewhere, and if all the possibilities are hopeless, then the

current node is hopeless too. Crucially Choice statements are treated differently:

because both branches of the nondeterministic choice are possible, it is enough that

in one branch all the successors are hopeless (the other branch is allowed to have

non-hopeless successors).

The following theorem shows that what we are calling “hopeless” nodes really do

inevitably lead to bad locations.

Theorem 6.2.2. Given a program P and a sound abstract model of P , and a model

checking problem B, if

(A.) Hπ, l, a (B.) π, s0
p−→ l, s (C.) (s0, s) ∈ γ(a)

then

(D.) ∃(π′, l′) ∈ B ∃s′0, s′, p′ π′, s′0
p′
−→ l′, s′

Proof: We proceed by structural induction on the derivation of Hπ, l, a. So let (A.),

6.2. Falsifying safety properties 221

(B.), (C.) be true. There are six cases to check, corresponding to the six derivation

rules.

h-already-there In this case we have (π, l, a) ∈ N and (π, l) ∈ B. From (B.)

we have π, s0
p−→ l, s. To obtain (D.) as required, simply set: π′ = π, l′ = l,

s′0 = s0, s′ = s and p′ = p.

h-choice-1 The premises of h-choice-1 give us

(X.) Edges(Graph(π))(l) = Choice : l′1 : l′2

and

(Y.) ∀a′ ∈ A , if (π, l, a)R(π, l′1, a
′) then Hπ, l′1, a

′

Now (B.) and (X.) meet the premises of the choice-1 rule, so we derive the

conclusion π, s0
l,s−→ l′1, s. By sound-intra, we see that there exists a′ ∈ A such

that: (π, l′1, a
′) ∈ N , (s0, s) ∈ γ(a′) and (π, l, a)R(π, l′1, a

′). Instantiating (Y.)

gives us Hπ, l′1, a
′, which we can use as (A.) in the induction hypothesis giving

the conclusion (D.) as required.

h-choice-2 Almost identical to the previous case.

h-call The premises of h-call give us

(X.) Edges(Graph(π))(l) = Call(u, π′, [p1, . . . , pk]) : l′

and

(Y.) ∀a′ ∈ A , if (π, l, a)Rcall(π′, start, a′) then Hπ′, start, a′

Using (B.) and (X.) we invoke the call-1 rule to obtain π, s0 −→ l, s : π′, s′. By

sound-call, there exists a′ ∈ A such that (π′, start, a′) ∈ N , (s′, s′) ∈ γ(a′) and

also (π, l, a)Rcall(π′, start, a′).

6.2. Falsifying safety properties 222

Using the call-2 rule, we have π′, s′
ε−→ start, s′, and instantiating (Y.) gives

us Hπ′, start, a′; using these as (B.) and (A.) respectively in the induction

hypothesis gives the conclusion (D.) as required.

h-return This is the trickiest case. The premises of the h-return rule give

(X.) Edges(Graph(π))(l) = Return(v)

and

(Y.) ∀a′ ∈ A ,∀l′ ∈ Locs, if (π, l, a)Rreturn(π′, l′, a′) then Hπ′, l′, a′

We cannot be in the main procedure (i.e. π 6= π1) because the main proce-

dure doesn’t include a return, so by inspection of the rules for semantics of

programs, we see that the derivation of (B.) π, s0
p−→ l, s must at some point

have used the call-2 rule to obtain (π, s0
ε−→ start, s0), and therefore we must

have had the premise π′, t0 −→ l1, t1 : π, s0. This in turn can only have been

obtained with the call-1 rule, so we also had (among others) the premise

Edges(Graph(π′))(l1) = Call(u, π, [p1, . . . , pk]) : lc

We can now invoke the return rule, and we find that there exists tc such that

π′, t0
l1,t1,π,s0,l,s−−−−−−−→ lc, tc

Now by sound-return there exists a′ ∈ A such that (π′, lc, a
′) ∈ N , (t0, tc) ∈

γ(a′) and also (π, l, a)Rreturn(π′, lc, a
′). Instantiating (Y.) we get Hπ′, lc, a

′

which we can use as (A.) in the induction hypothesis giving the conclusion

(D.) as required.

h-ord The ord rule covers all the other statement forms. The premises of ord

6.2. Falsifying safety properties 223

give us

(Y.) ∀a′ ∈ A ,∀l′ ∈ Locs, if (π, l, a)R(π, l′, a′) then Hπ, l′, a′

By Remark 6.2.1 (seriality) we find that there exist l′, s′ such that π, s0
l,s−→ l′, s′.

From sound-intra there exists a′ ∈ A such that: (π, l′, a′) ∈ N , (s0, s
′) ∈ γ(a′)

and (π, l, a)R(π, l′, a′). Instantiating (Y.) gives us Hπ, l′, a′, which we can use

as (A.) in the induction hypothesis giving the conclusion (D.) as required.

We can now justify falsification using judgement H.

Criterion 6.2.3. Given a program P and a sound abstract model of P , and a set

of bad nodes B, then

(1.) ∀a ∈ A , if (π1, start, a) ∈ N then Hπ1, start, a

is sufficient to verify

(2.) ∃(π, l) ∈ B ∃s0, s, p π, s0
p−→ l, s

i.e. is sufficient to show some bad node is reached.

Proof: We will use Theorem 6.2.2, putting π = π1, l = start and s = s0 =

sstart, to obtain the required conclusion. By sound-init, there exists a ∈ T such

that (π1, start, a) ∈ N and (sstart, sstart) ∈ γ(a). This immediately gives us (C.)

(s0, s) ∈ γ(a). Applying the init rule obtains π1, s
start ε−→ start, sstart which is (B.),

and instantiating (1.) above gives Hπ1, start, a which is (A.).

6.2.2 Example of falsification

Figure 6.3 shows a variant of our square root program, this time all in one procedure

for simplicity. The single procedure nondeterministically generates a natural number

6.2. Falsifying safety properties 224

Figure 6.3: An example falsification of a faulty program (our square root program,
made faulty by negating the loop guard) using our new falsification method. Edges
used in the computation of H are shown in purple.

6.2. Falsifying safety properties 225

Figure 6.4: Outline view of a falsification of a faulty program. Edges used in the
computation of H are shown in purple.

n and then calculates its integer square root in x. This time, however, we have

introduced a “mistake”: the guard for the loop is the negation of what it should be.

Our new falsification method can prove that this program reaches the asserterror

state using sign analysis: in Figure 6.3 the edges used in the computation of H are

shown in purple. On the outline view (Figure 6.4) this is easier to see. (Note that

this falsification would not be possible if Choice statements were treated in the same

way as other intraprocedural statements.)

6.2.3 Remarks

As stated earlier, this approach to falsification was inspired by GMC [BG00] which,

relative to a fixed model, obtains more precise model checking results. GMC achieves

this by “case splitting” on unknown propositions; here we similarly case split on each

node’s set of possible outgoing transitions.

Our paper [CH08] presents this falsification method in a slightly more general way,

and uses a different expository device, for which we lack the space here: the approach

6.3. Post-pruning models 226

is presented as solving a two-player attractor game between two players F, who is

trying to Falsify the program, and P who is trying to Prevent this from happening.

A position in this game is simply an abstract node (π, l, a) and a move consists of

choosing an abstract successor of the current node, which then becomes the new

game position. Player F wins by forcing play to a location in B, which falsifies

the program. [CH08] presents further methods and analyses which apply when the

programming language contains no nondeterministic statements other than Choice;

this is not the case in the setup of this thesis, because our memory allocation state-

ment is also nondeterministic. In particular, an approach is given which combines

our game-based method with that based on under-approximating must transitions.

On the other hand, [CH08] omits the treatment of procedures and does not make

the connection to post-pruning, which is the subject of the rest of this chapter.

Cost of new falsification check We can compute the full set of abstract nodes

n for which Hn (which corresponds to finding the winning region in the associated

game) in time O(m + e), where m is the number of nodes in the model, and e is the

number of edges. In fact, this set can be computed in a way that visits each edge at

most once. This makes our falsification check very fast. Also, note that no changes

to the model extraction phase were needed. Therefore, although the check may be

very imprecise, it is essentially “free”, and therefore worth having.

6.3 Post-pruning models

6.3.1 Paths which “fizzle out”

Figure 6.5 shows hector’s “outline” view of the list add procedure in our case

study. What is interesting about this graph is that three of the executions, shown

in purple, simply stop — the final node has no successors. At first this seems to

contradict the seriality we relied on in the previous section for falsification.

6.3. Post-pruning models 227

Figure 6.5: Outline view of the procedure list add showing (in purple) three paths
which fizzle out.

When one looks more closely at one of these executions, however, as in Figure 6.6,

it soon becomes apparent what is going on. The first abstract state of the Figure

is already inconsistent: the predicate abstraction and shape analysis parts cannot

be reconciled. The predicate abstraction part says that newelemx is allocated but is

not reachable (i.e. is not in the linked list). But the shape analysis part insists that

every heap node is reachable (i.e. is in the list). However, this inconsistency is not

“noticed” immediately, in this case because the shape analysis part doesn’t track the

variable newelemx. Two statements later, however, when the value is copied from

newelemx to newelem, the inconsistency is detected and no successors are returned.

Subtrees of the model such as this are said to fizzle out, and are automatically

infeasible. Their existence is irritating for two reasons.

� The extra, infeasible states clutter up the model and make it more difficult for

the user to follow.

� The extra states may be explored by our LTL safety checking procedure (which

is thus slowed down) and may also be returned as part of counterexamples,

6.3. Post-pruning models 228

Figure 6.6: An execution path which fizzles out. In the first (topmost) state, the
components for tvla and tpa are already inconsistent, but this is not noticed until
the value from newelemx is copied into newelem.

6.3. Post-pruning models 229

which makes model checking less precise (because such a counterexample is

automatically infeasible).

Here we give a simple method for removing such infeasible parts of the model,

thereby making the model smaller and easier to understand, and making our tem-

poral logic model checking procedure more precise and faster.

6.3.2 The post-pruning algorithm

It turns out that we can detect such extraneous states by invoking the falsification

algorithm of Section 6.2 with an empty set B := ∅ of bad locations. To see this

intuitively, suppose that for B = ∅ we have Hn for a node n. This tells us that

if execution ever reaches n, it must inevitably at some stage reach the empty set

of locations. Of course this is impossible, so we conclude that execution can never

reach n. The following lemma captures this intuition.

Lemma 6.3.1. Given a program P and a sound abstract model of P , if Hn for

some node n = (π, l, a), with respect to the empty set of bad nodes B = ∅, then

there do not exist s0, s, p such that (s0, s) ∈ γ(a) and π, s0
p−→ l, s.

Proof: Suppose for a contradiction that s0, s, p as above exist. We will invoke

Theorem 6.2.2: by assumption we have (s0, s) ∈ γ(a), π, s0
p−→ l, s and H(π, l, a)

which are (C.), (B.) and (A.) respectively. The conclusion of Theorem 6.2.2 tells us

that there exist (π′, l′) ∈ B = ∅ which gives us our contradiction.

We can now state our post-pruning operation.

Definition 6.3.2. Post-pruning operation. Let

Q = (T, γ, N,Edges,CallEdges,ReturnEdges)

6.3. Post-pruning models 230

be an abstract model for a program P . Then defining X ⊆ N by

X := {n ∈ N | not Hn with respect to B = ∅}

we define the pruned model prune(Q) to be

(T, γ, N ∩X,Edges ∩ (X ×X),CallEdges ∩ (X ×X),ReturnEdges ∩ (X ×X))

The following theorem, which completes this chapter, shows that our pruning oper-

ation is sound.

Theorem 6.3.3. Let Q be an abstract model of a program P (as per Defini-

tion 3.3.1). If Q is sound (as per Definition 3.3.2) then prune(Q) is also sound.

Proof: We must show that the properties sound-init, sound-intra, sound-call and

sound-return hold for prune(Q). We will only do the case for sound-intra, as the

other cases are similar.

Let π, s0
l,s−→ l′, s′ with (π, l, a) ∈ N ∩ X and (s0, s) ∈ γ(a). By sound-intra for Q,

there exists a′ ∈ T such that (π, l′, a′) ∈ N , (s0, s
′) ∈ γ(a′) and ((π, l, a), (π, l′, a′)) ∈

Edges. All we need to do, then, is prove that (π, l′, a′) is in X. So we suppose not

and derive a contradiction.

It follows from (π, l′, a′) /∈ X that H(π, l′, a′) with respect to B = ∅. Then by

Lemma 6.3.1, there do not exist ŝ0, ŝ, p̂ such that (ŝ0, ŝ) ∈ γ(a′) and π, ŝ0
p̂−→ l, ŝ.

But we already have such values, namely s0, s′ and (l, s) respectively.

6.4. Summary 231

6.4 Summary

In this chapter we described three extensions to the basic hector system, which

increase its usefulness (particularly when dealing with large models):

1. Checking of temporal safety properties: Users can find traces of interest

to them (in abstract models that are already built) by making ad-hoc queries

in a sophisticated temporal logic.

2. Post-pruning of the model: Parts of the model that are inconsistent can

sometimes be identified and pruned away “for free”, making the model smaller

and easier to understand, and producing more precise verification results.

3. Falsifying programs: Programs can be falsified (proved incorrect) as well

as verified, by using a falsification check. Two-player games provide the in-

tuition for this check, which does not require any changes to the model con-

struction part of hector.

This chapter brings us to the end of the technical contributions of this thesis. In

the next and final chapter, we will reflect on what this work has achieved, and the

extent to which the goals we set out in Chapter 1 have been met. By reflecting in

this way, we will identify important questions to be born in mind if one wishes to

continue this line of research.

Chapter 7

Conclusions

7.1 Contributions of this thesis

In Chapter 1 we set a series of objectives for this thesis, in three groups: Design

objectives (D1-D4), Implementation objects (I1-I5) and Experimental objectives

(E1-E5). We also outlined, at a higher level, the Benefits (B1-B4) that we hoped

our approach would provide. We shall now revisit these objectives and proposed

benefits (reprinting them in a slightly abbreviated form) which will allow us to

review what we have accomplished and what remains as future work.

7.1.1 Revisiting our design objectives

D1 Fix the “target programming language”, i.e. the language in which the programs

to be verified will be written, and formalise its syntax and semantics.

In Section 3.1 we gave a syntax and semantics for our target language. The

language is simple and idealised, and untyped, but expressive with recursive

procedures and dynamically allocated heap objects. Syntax-wise, we chose to

work directly with control flow graphs to avoid the nuisances of source code,

and we chose a small but sufficient set of statement forms. We gave operational

232

7.1. Contributions of this thesis 233

semantics for our language, handling recursion directly in the rules rather than

with explicit stacks.

D2 Define the single common language which analysis modules will use to exchange

information.

In Section 3.2 we gave syntax and semantics for a rich logic over program

states, which we called L , which analysis modules use to share information

about the program state. In fact L performs triple duty, also being used

to express guards for alternation and iteration statements in programs, and

assertions about desired program behaviour.

L incorporates time indices, so that e.g. x0 denotes the value of variable x on

entry to the current procedure, and x1 denotes the value of x before the current

statement executed. Thus L can express the effects of individual statements,

and frame conditions for procedures.

In an important design decision we chose L to be a first order logic with

transitive closure. We gave arguments for this choice in Section 3.7: we noted

that some mechanism for expressing reachability in the heap is clearly neces-

sary, and that transitive closure seems to be adequate for many purposes (as

opposed to, say, second order logic) while admitting a reasonably clean sound

(but incomplete) axiomatisation in first order logic.

In retrospect, in this thesis we have not tested our choice of L very well,

because all our shape reasoning is done by TVLA, and the transitive closure

operator is “native” to TVLA. A better test would be to implement new

analysis modules based on graph grammars and separation logic, which don’t

have a native treatment of transitive closure, and see how well L works as a

communication language for such modules.

D3 Devise an appropriate interface through which analysis modules can talk to the

central “broker”.

7.1. Contributions of this thesis 234

In Subsection 3.4.1 we gave an interface which our analysis modules present

to the central broker. An analysis module M appears like a “conventional”

abstraction domain, with two differences. Firstly, in order to provide infor-

mation to other modules, there is an extra function M.share which returns

L -formulae which are entailed by a particular abstract value. Secondly, in or-

der to make use of formulae provided by other modules, the abstract successor

function M.succ now takes an L -formula as an extra argument.

In Definition 3.4.3 we gave conditions specifying what it means for an analysis

module to be sound; these conditions are relied upon in later proofs.

Overall we found this interface to work well when designing modules, with two

minor complaints:

� Occasionally we found that sharing of formulae during procedure calls and

returns, which we did not implement, would have worked well. Some-

times, for instance, we had to insert an extra Skip statement between

successive procedure calls to make time for a round of formula sharing.

The limited TC axioms we added to Simplify (page 162) were only needed

because of the absence of sharing during calls and returns, and there were

also occasions when extra abstraction predicates had to be added to the

configuration for the same reason.

This was not at all surprising to us, as we had believed all along that

sharing during calls and returns would be useful; indeed we used it in

our earlier publications [Cha06c, Cha06a]. We later dropped this fea-

ture because it increases the amount of code needed to implement each

analysis module, and complicates various proofs, but is not different in

any interesting way from sharing during ordinary statements; it is simply

“more of the same”.

� The share function is passed the appropriate abstract value a, the current

procedure name and the statement being executed, but not the current

7.1. Contributions of this thesis 235

program location. This seemed reasonable because the shared formulae

are generally extracted from a. However, it precludes an implementation

of the non-null types from [JMG+02]. The idea of non-null types is to

identify variables which, despite starting off as null (because all variables

do, on procedure entry), are quickly assigned a non-null value and there-

after remain non-null. Such types (and thus the resulting share function)

need to take program locations into account.

What we have not done, and perhaps should have done, is to ask a third

party programmer, who is not familiar with our broker code, to implement an

analysis module based solely on seeing the interface. We believe the feedback

provided by such a programmer would help us understand whether we have

the “right” interface.

D4 Formulate a generic verification algorithm for the broker, which works with

whatever set of analysis modules is presented, and propagates information be-

tween them so that they cooperate.

In Section 3.5 we gave an algorithm extract-model for automatically ex-

tracting models from programs. Our algorithm is worklist-based and uses pro-

cedure summarisation to handle (recursive) procedure calls without requiring

that procedures be annotated with pre- and post-conditions. Our algorithm is

module-based or “generic” in that it works with any analysis module provided,

accessing such modules only through the defined interface.

We proved that extract-model terminates and proved that it delivers sound

results, by showing that, among other things, if the model contains no abstract

states at the special program locations memerror and asserterror then the

program really is error-free.

Rather than making our model extraction algorithm parametrised on a list

of analysis modules, we presented it for a single module, performing module

combination and cooperation at the module level: in Section 3.6 we provided a

7.1. Contributions of this thesis 236

module combinator � for combining two modules into one, which makes them

cooperate by exchanging information. By iterated application of � we can

cooperatively combine as many modules as we like.

In fact, we went further than planned in two ways:

Falsification We developed in Section 6.2, and formally proved the correct-

ness of, a novel method for falsifying safety properties using the same kind

of models, i.e. using only over-approximation. This falsification check may

not be very precise but is so computationally inexpensive that we may

consider it as “coming for free”.

LTL safety checking In Section 6.1 we outlined (though did not formalise)

an automaton-based procedure for model checking safety properties using

a “two-level” fragment of LTL. By “two-level” we mean that the “propo-

sitions” of the temporal logic can themselves be any formulae of our first

order logic L . This model checking procedure may be slow and impre-

cise, but on the other hand it is very flexible: a huge range of ad-hoc

queries can be made without having to recompute the model.

7.1.2 Revisiting our implementation objectives

I1 Implement the central broker which coordinates the verification process, using the

algorithm from D4.

We programmed hector, a prototype of the verification framework we de-

signed, using Prolog as described in Sections 4.1 and 4.2. We chose Prolog

because it has several features well-suited to rapid prototyping. Our implemen-

tation stores programs, configurations and models very simply, using dynamic

predicates in the Prolog database (via assert and retract), and represents

formulae of L with Prolog terms. Using SWI Prolog’s module system, we

place the code for each analysis module in a separate Prolog module, for clean

7.1. Contributions of this thesis 237

separation.

I2 Implement an analysis module for predicate abstraction, which supports both the

trivector and monomial variants.

Section 4.4 details our analysis modules for these two predicate abstraction

techniques. The two modules share most of their code. The existing theo-

rem prover Simplify is used currently, but is accessed through a well-defined

interface so the modules could be modified easily to use another prover.

Our modules use so-called connecting formulae rather than a predicate trans-

former (weakest precondition or strongest postcondition), as described in Sub-

section 4.4.1. This is because any shared formulae received are over several

time indices, and we couldn’t immediately see how to use these alongside a

predicate transformer, which produces formulae over a single time index only.

Procedure returns are dealt with by using special time indices 2 and 3.

We also cache the results of theorem prover calls, to avoid unnecessary re-

peated computation. This is especially important because when another mod-

ule causes branching, the predicate abstraction modules often make identical

theorem prover calls in each of the resulting branches.

I3 Develop a module for three-valued shape analysis, by appropriately wrapping the

TVLA software.

Section 4.5 describes the implementation of our shape analysis module, using a

slightly modified version of TVLA. This module is by far the most complicated

of those we implemented, and the most configurable. Configuration options

include: which variables/fields are tracked and which are ignored, which pro-

cedures are analysed and which are ignored, which variable are “focused”, the

use of instrumentation predicates (for reachability and cyclicity), and what

patterns of formulae are shared.

To make use of shared formulae, our module translates them into TVLA’s in-

ternal logic and then uses the coercion operation (Subsection 4.5.4). To provide

7.1. Contributions of this thesis 238

shared formulae, the module reuses this translation along with a procedure for

generating candidate shared formulae, according to the general scheme given

in Subsection 4.5.5.

While our shape analysis module worked well in our case study, we do see two

potential areas of improvement.

� More systematic translation:

As noted in Subsection 4.5.4, we translate literals from L into TVLA’s

internal logic by recognising a long list of particular cases, rather than

by a systematic process. We do this because the systematic translation

we tried produced formulae which, while correct, gave imprecise results

under compositional three-valued semantics.

We could in future investigate whether a translation exists which is sys-

tematic yet still adequately precise and efficient, perhaps by using pat-

terns for minimisation as in [AH06].

� Using a “free list”:

In our module, the universe of the TVLA heaps is the set of allocated

heap objects, rather than Z. In retrospect this was a mistake. A better

approach would be to use Z as the universe, modelling the unallocated

addresses explicitly using a “free list”, having an explicit node for null,

and using a summary node to represent all negative values. Allocating a

heap object would then correspond to removing an element from the free

list. This approach would have several advantages:

1. We could drop the restriction that quantifiers in L can only be trans-

lated if they are appropriately guarded by an allocation predicate.

2. Our shape analysis module would never have to “give up” (as de-

scribed in Subsection 4.5.2) because all possible values of variables

could be modelled.

7.1. Contributions of this thesis 239

3. We could represent the restriction that a pointer is not null (due to

the use of an explicit null node).

4. We would have the option in future of using the finite differencing

methods developed in [RSL03], which would assist in introducing

new forms of instrumentation. These methods cannot be used with

statements, such as our New statement, which change the universe of

the abstract heaps1.

I4 Provide an interface by which users can enter programs, configure and start the

verification process, and monitor the results.

Users of hector provide input programs and configurations as text files, us-

ing Prolog syntax, as described in Section 4.2; models are also saved in this

way. Such text files remain human readable and editable, and can be pro-

cessed by many utilities; this is the UNIX tradition. Programs are entered as

control flow graphs rather than as source code, which keeps the system sim-

ple, but eventually turned out to be a nuisance; this is discussed in the Future

Directions Section 7.3.

In order that the user can explore models of programs, and understand coun-

terexamples returned, hector can produce various forms of graphical output,

as we saw in Section 4.9. For ease of use, these visualisation functions are ac-

cessed through a web browser, where the models built are arranged into a

tree of folders. Through this web interface, the outputs can be customised in

various ways, for example by hiding the components from a particular analysis

module. hector can also show where sharing between modules proved useful.

hector can automatically generate verification summaries of the kind seen in

Figures 5.5 and 5.6, which give statistics about the use of sharing and about

the configuration options used.

Finally, as described in Section 6.1, we allow interesting execution paths to be

1We thank Tal Lev-Ami for a helpful discussion of these issues.

7.1. Contributions of this thesis 240

found by queries in a “two-level” variant of safety LTL, where “propositions”

can be arbitrary first order formulae (of L). Even though such queries are

not checked particularly quickly, finding interesting executions in this way is

still much faster than manual inspection of the model.

I5 Implement some shallow analysis modules to help out the sophisticated ones.

We implemented four shallow analysis modules:

types (Section 4.6) places a type system on top of our untyped language,

performing type inference to discover variables that stay within particular

subsets of Z. These subsets (types) are: non-negative, allocated, Boolean

and null.

symbprop (Section 4.7) provides symbolic constant propagation.

compsigns (Section 4.3) provides a simple sign analysis. Formulae received

from other modules are interpreted using a compositional three-valued

semantics.

refs (Section 4.7) provides simple tracking of heap references: each tracked

variable is classified as either ‘null’, ‘ref’ (a valid heap reference) or ‘other’.

The implementation, including treatment of incoming formulae, is similar

to compsigns.

7.1.3 Revisiting our experimental objectives

E1 The program verified is moderately sized, is based on a piece of real-world soft-

ware, and uses diverse features.

For our case study we verified an implementation of the MineSweeper puzzle

game (detailed in Section 5.2). We adapted the (publicly available) program

used for the case study in [LR07], which seemed a reasonable approach since

that program uses all the main features on which we wanted to test hector:

7.1. Contributions of this thesis 241

linked data structures, pointer arithmetic and recursion. Our adapted pro-

gram consists of 356 program statements across 24 procedures together with

48 associated declarations (for fields, procedures, and shorthand formulae).

As described in Subsection 5.2.3 we annotated the program with high-level

properties, similar to those mentioned in [LR07], which make sense at the ap-

plication level, but also with low-level assertions at the entry and return points

of most procedures. This gave a total of 43 conditions to verify.

E2 The verification employs (at least) two sophisticated domains, which are signif-

icantly different.

We verified the MineSweeper program using modules for predicate abstraction

and three-valued shape analysis. The two are significantly different: predicate

abstraction is based on theorem proving, and can reason about numerical

properties but not transitive closure, whereas three-valued shape analysis is

based on models, and can reason about transitive closure but not numerical

properties.

E3 There is a two-way exchange of information between the sophisticated domains:

each contributes information which the other uses to make its own analysis

better in interesting ways.

In Section 5.5 we traced through the model extraction algorithm following

a particular “scenario” of MineSweeper gameplay, and pick out interesting

instances of formula sharing. We see the predicate abstraction module helping

the shape analysis module, and vice versa. The tables in Figure 5.6 confirm

this, and provide simple statistics about the use of shared formulae.

E4 One or more additional domains implementing shallow analyses are shown to

help out the sophisticated domains, by handling easy cases or supplying infor-

mation that can be easily obtained. The verification should run faster when

these additional domains are used.

7.1. Contributions of this thesis 242

When we used our four shallow modules alongside our predicate abstraction

and shape analysis modules, our verification ran faster, and needed less user

guidance. Specifically, the model extraction time was cut by 64 seconds, a

reduction of 14%. 101 fewer configuration items were needed, a reduction of

32%. This was discussed in Section 5.4.

E5 The domains used should implement techniques that are useful for software veri-

fication in general, and not be developed specifically just to make the case study

work.

Five of the analysis modules used in our case study implement generic, existing

program analysis/abstraction techniques. The sixth, refs, which we invented

ourselves, is uncomplicated and is generally applicable.

7.1.4 Revisiting the proposed benefits of our approach

The conjectured benefits B1-B4 of our approach, set out in Chapter 1, represent

the long-term, high-level goals for the idea of modular domain combination, and

are perforce ambitious and somewhat nebulous. Hence, we can only draw tentative

conclusions here. Nevertheless, we dutifully revisit them one by one (again in slightly

abbreviated form).

B1 Verifying programs with diverse features: Abstract domains in use target

specific aspects of program behaviour, such as numerical relationships, linked

data structures, use of string buffers etc. But in applications programs, these

features are all mixed up together. Verification systems based on a single

specialised domain cannot verify such programs. By combining the different

domains cooperatively, we hoped our system would solve a broader range of

verification problems.

We have successfully demonstrated this benefit in our case study. Our imple-

mentation of MineSweeper cannot be verified by first order predicate abstrac-

7.1. Contributions of this thesis 243

tion, because first order logic cannot even express the required heap reacha-

bility properties. Similarly the program cannot be verified by TVLA because

it uses pointer arithmetic which TVLA cannot reason about. By combining

the two approaches, and making them cooperate, we were able to verify the

program.

B2 Using cheap analyses where applicable reduces workload: We suspected

that by using cheap but shallow analyses alongside more expensive but deeper

ones, we could reduce the workload of the more expensive analyses. We hoped

to gain the depth of the more expensive analyses, but with less computation.

We have successfully demonstrated this benefit with our case study too. Using

our shallow modules alongside our sophisticated ones reduced both the model

extraction time (cut by 64 seconds, a reduction of 14%) and the amount of

user guidance needed (101 fewer configuration items were needed, a reduction

of 32%.)

B3 Implementation is more manageable: The implementor of an analysis

module just needs to implement the module interface: he only has to make

his module “understand” the single common logic, and the new module will

then cooperate with existing ones. The implementor does not need to know

about the abstract constraints used internally by other modules. Thus, we can

develop the verification system in small, easy to understand parts.

Our personal experience of working with hector is that this benefit is indeed

provided. When we programmed our tvla module, for instance, we genuinely

didn’t have to worry about pointer arithmetic, and when we wrote our pred-

icate abstraction modules, we genuinely didn’t have to add mechanisms for

proper transitive closure reasoning. Adding the shallow modules was espe-

cially easy.

In a sense, however, it is difficult for us to answer this question, because we

understand the whole hector system in any case. We suggest the following

7.2. Comparison with other approaches to domain combination 244

experiment: ask a third party to implement a module for e.g. separation logic

based shape analysis. This third party should be familiar with the common

logic L and the interface for analysis modules, but not the rest of the hector

system. If such a third party can comfortably produce a working module,

which can be “dropped in” to our case study in place of the tvla module, this

is a good sign that our system is well structured.

B4 Abstractions can be mixed and matched, with the most appropriate

chosen for each task: Different verification tasks require or benefit from

different kinds of abstractions. In our scheme, once abstractions have been

suitably wrapped as modules, they can be “mixed and matched” freely, so we

can select whatever kinds we need for each task.

Because we have so far only undertaken one serious case study, there is little

we can say about this proposed benefit. To investigate further, one could

implement more domains, and have a group of users verify a broad range of

programs. One could then see whether the users really did select different

domains for the different verifications tasks, or whether they used the same

few over and over; in the latter case, these might be the “best” domains.

7.2 Comparison with other approaches to domain

combination

In Chapter 2 we described the classical reduced product operator which gives ideal do-

main combination, but is non-algorithmic, meaning that no modular implementation

of the operator is possible. We also described work on the open product operator,

which was the only research we could find that began to address the problem of

combining domains in a modular way.

In this section we focus on recent work in this area. We compare our work to

7.2. Comparison with other approaches to domain combination 245

some recently developed systems which perform (some kind of) automatic domain

combination. These are systems which emerged either around the time we began our

work on hector in late 2004, or later. We cannot exhaustively discuss all related

work in detail; among the interesting and relevant research not examined here is

[BHT07]. We feel encouraged by the level of attention that this topic has received

recently.

7.2.1 Comparison with Nelson-Oppen style systems

Various verification systems [GT06, CL05, RBHC07] have been built or proposed

which base their domain combination on the well-known Nelson-Oppen technique

[NO79], which is a way to combine reasoners for various logical theories into a rea-

soner for the combined theory:

“In this paper we give a general method for combining decision proce-

dures for two quantifier-free theories into a single decision procedure for

their combination, which contains the functions and predicates of both

theories. The method is based on a technique which we call equality

propagation.” [NO79]

For instance, in [NO79] it is shown how to combine decision procedures for various

theories including: equality, integer arithmetic with +, − and ≤, the Lisp functions

for lists (car, cdr and cons), the theory of arrays (using functions store and select),

and the theory of uninterpreted functions.

The Nelson-Oppen approach is similar to ours in that it allows reasoners for each

of the theories to be developed separately, with a clearly defined interface, and then

combined modularly. For example, while writing the decision procedure for arrays,

one does not have to worry about terms containing + and −; similarly, while writing

7.2. Comparison with other approaches to domain combination 246

the decision procedure for linear arithmetic, one does not have to worry about array

accesses.

Overall, however, the two approaches are not very alike. Here are some of the

differences between them:

� In Nelson-Oppen, the class of constraints in each reasoner can only be a

quantifier-free first order logical theory. In contrast, in our approach we can

use any kind of constraints for which the appropriate functions (such as con-

cretisation, γ) can be defined. Hence, for instance, TVLA models can be

integrated within our approach but cannot be used with Nelson-Oppen.

� With Nelson-Oppen only equalities between variables are propagated between

the reasoners being combined. In our approach, on the other hand, any for-

mula of L can be propagated, including formulae which use quantifiers and

transitive closure.

� The scheduling of propagation is different in the two approaches. In both, the

propagation of a formula can allow the receiving reasoner/module to conclude

further properties of interest. In our approach we do not (yet) try to take

advantage of this; we simply perform one round of formula propagation for each

successor computation. In Nelson-Oppen however, any additional equalities

which become available are themselves propagated as soon as possible, and

may then trigger further propagations in turn.

� In Nelson-Oppen the various theories which are to be combined must be dis-

joint, i.e. they must have no predicates or functions in common. This means

that, for example, one cannot combine two reasoners which both produce con-

clusions about arithmetic inequalities. In our approach we can do this, and

we do, such as when combining our types module with our tpa module. All

our analysis modules accept the whole of L , and it is up to each module to

decide which information in a particular formula it finds useful.

7.2. Comparison with other approaches to domain combination 247

Much is made of the fact that the Nelson-Oppen approach provides the most pre-

cise possible combination of the decision procedures being combined. For example,

[RBHC07] cites our work with the following comment:

“Similarly, Charlton and Huth propose a software model checker in which

separate analysis plugins (such as for heaps and for other theories) can

cooperate, but the communication is ad hoc, so there are no guarantees

that all interactions between theories are propagated.”

We would like to point out, however, that results about the completeness or maximal

precision of the Nelson-Oppen technique are only obtained by placing very strong

restrictions on the theories being combined. In [RBHC07] the condition given is

that the theories are stably infinite quantifier-free first order theories with disjoint

signatures.

We have not pursued such results for our framework because we know that, for any

reasonably general definition of an abstraction domain, maximally precise combina-

tion will be impossible. To see this, note that, using only our predicate abstraction

module tpa, computing successors for a single Skip statement is already an unde-

cidable problem.

We now mention some specific Nelson-Oppen style systems (to which the above

general comments apply):

� [RBHC07] describes an SMT (satisfiability modulo theories) solver called Math-

SAT, in the spirit of Nelson-Oppen, which includes a theory for some partic-

ular forms of heap reachability. This theory can express the reachability of

one variable from another via a particular pointer field, and a related notion

of “betweenness”. MathSAT is then used for predicate abstraction of heap-

manipulating programs, combining reachability and data value reasoning.

7.2. Comparison with other approaches to domain combination 248

� [CL05] provides a congruence-closure domain, which is parametrised by a set

of base domains and effects a weak combination of those domains. The method

is again related to the Nelson-Oppen technique. A base domain is given which

is meant to track the heap, and allow other domains to treat heap expressions

as if they were simple variables. However this heap succession domain is based

on the theory of arrays (with select and store operations) and so cannot deal

with heap properties such as reachability or cyclicity.

� [GT06] provides a logical product operator for a particular class of domains,

the logical lattices. This method is very close to Nelson-Oppen, and hence

propagates from one domain to another only equalities between variables. The

theories considered in this paper are those of linear arithmetic, parity, sign,

uninterpreted functions and Lisp lists.

7.2.2 Comparison with the Hob system

The Hob system [KLZR05, LKR05] also allows different analysis techniques to co-

operate in order to verify a program, and largely shares the goals of our work:

“We have developed a variety of analyses, with each specific analysis

structured to verify a specific, fairly narrow class of data structures.

The ability to target each analysis to a specific class of data structures

has provided substantial benefits. Eliminating the burden of building

a single general analysis has reduced the overall development overhead

and enabled us to produce very narrow but very sophisticated analyses

with relatively little engineering effort. It has also reduced the amount of

broad expertise any one person needs to acquire to develop an analysis.”

[KLZR05]

The mechanism by which domains interact in Hob is quite different, however. Tar-

get programs must be structured into modules, and exactly one domain is used to

7.2. Comparison with other approaches to domain combination 249

analyse each of these. At the boundary of each source code module, the user defines

some abstract sets of heap objects; the way these sets are defined is specific to the

domain used. For example, for a source code module implementing a linked list,

one might define an abstract set denoting all list elements. It is through these sets

that the domains interact: BAPA (the theory of Boolean algebra with Presburger

arithmetic [KNR05]) is used as a common logic, and also for behavioural assertions.

Thus, each program statement is analysed by a single domain, and interaction be-

tween domains only occurs at the boundaries of source code modules. This is an

important difference between Hob and hector — Hob’s authors strive to “decou-

ple” the analyses whereas we seek to integrate them more tightly.

7.2.3 Comparison with the Jahob system

The Jahob system [ZKR08] also combines different reasoning techniques, using them

collaboratively to verify programs, but uses a different technique called integrated

reasoning. The system is based on generating and proving verifications conditions;

the logic used is full classical higher-order logic. The central idea, referred to as

splitting, is to replace each complicated verification condition with a conjunction

of simpler ones. Each simpler conjunction is then dispatched to an appropriate

reasoner.

“A typical data structure operation generates a verification condition

that splitting separates into a few hundred implications, each of which

is a candidate for any of the provers.” [ZKR08]

This approach shares our goal of exploiting shallower, cheaper or more specialised

analyses where possible: if the system recognises that a certain conjunct is of the

kind that can be solved well by a particular prover, this prover can be invoked. If

a conjunct cannot be proved by any of the automated provers, the user is required

7.2. Comparison with other approaches to domain combination 250

to supply the proof using an interactive proof assistant. It is not clear what level of

automation Jahob achieves.

We note that Jahob exploits existing first-order provers by translating a subset of

higher-order logic into first-order logic [BKW+07]. We had conjectured that this

could not be done effectively (see our discussion in Section 3.7) but it seems we were

mistaken.

7.2.4 Comparison with the ASTRÉE system

[CCF+06] details the domain combination mechanism used in ASTRÉE [CCF+05],

an industrial tool for verifying mission-critical embedded software. As our hector

program is a prototype written by a single person, it would be absurd to compare

the overall effectiveness of the two, but we will comment on conceptual differences

relevant to the domain combination techniques.

Like our approach, ASTRÉE features a modular product operator which approxi-

mates the reduced product. The interface for abstraction domains provides opera-

tions EXTRACT, which corresponds to our share, and REFINE which corresponds

to our extra parameter to succ. The stated aims of this are similar to ours, e.g.

“This modular design allows abstract domains to be turned on and off by

runtime options, easy addition of new domains, and the suppression of

older domains that have been superseded by newer ones. [...] ASTRÉE

is therefore an extensible abstract interpreter.” [CCF+06]

Here are some differences between the two approaches.

� The scheduling of information propagation in ASTRÉE is much more elaborate

than in our approach. For instance, the product operator is not commutative,

7.2. Comparison with other approaches to domain combination 251

with (say) the domain on the left being run first, and certain kinds of commu-

nication flowing from the left domain to the right domain but not vice versa.

Thus when several domains are combined they are formed into a hierarchical

structure.

� In ASTRÉE there is no single common language for propagation. Instead,

there are many special types of constraint that can be communicated, and it

is up to each domain to decide which types of constraints it can deal with.

“Constraints are implemented with a sum type, where each sum-

mand is a different kind of constraints. After each computation,

each domain collects a list of constraints [...]. The primitive REFINE

scans the list and refines the abstract properties accordingly.” [CCF+06]

It is not entirely clear from [CCF+06] what these different kinds of constraints,

or “summands”, are in practice, but it appears that they are simple numerical

or Boolean relations between program variables (and thus quantifier-free).

� Abstract values in ASTRÉE represent sets of traces rather than sets of states.

� ASTRÉE doesn’t handle dynamic memory allocation, and therefore doesn’t

handle linked data structures. The domains used in ASTRÉE appear to be

mostly numerical in nature (such as intervals, octagons, ellipsoids, arithmetic-

geometric progressions).

� Recursion is not supported in ASTRÉE.

� ASTRÉE provides some domain constructors other than the product operator,

such as a Boolean partitioning domain transformer.

� ASTRÉE supports widening and uses it heavily.

7.3. Future directions 252

7.3 Future directions

During the course of this work, we have become aware of far more new research

questions than we care to list. Here, in no particular order, is a small sample.

1. How can we incorporate widening into our approach?

2. What should be the “most thorough” semantics for checking linear time tem-

poral logic properties over our models?

3. How does the integration of a module based on X work out? (where X is

ownership types, graph grammars, graph types, separation logic, octahedra

etc.)

4. Given that only a small fraction of shared formulae turn out to be useful to

another module, is there a way to avoid so much superfluous sharing without

losing precision? (perhaps by means of a lazy sharing strategy, in the spirit of

lazy abstraction [HJMS02])

5. What happens when feature X is added to the language? (where X is excep-

tions, inheritance, garbage collection etc.)

6. How does one do termination arguments in our module-based system?

7. Can our framework be extended to deal with multi-threaded programs by

borrowing from existing work?

8. Do we really need to use connecting formulae instead of predicate transformers

in our predicate abstraction modules?

9. If so, is there something special that theorem provers can do to better reason

about connecting formulae (which follow a set pattern)?

10. Can we make our target language’s semantics closer to those of “real” program-

ming languages by using partial functions, and if so, how should we represent

partial functions in the logic L ?

7.3. Future directions 253

Also, of course, it would clearly be desirable to perform more, and more diverse,

verification case studies with hector to gain more insight into how applicable the

approach is in practice.

Having said all that, we now outline in greater detail what we believe are the three

most important directions for the continuation of this line of research (for reasons

we will explain): one practical, one theoretical and one that is a blend of the two.

7.3.1 Practical issue: processing source code

As we have seen, the current version of hector takes as input specially prepared,

textually represented CFGs. While this was useful during the early prototyping

period, because it kept the hector system simple, the fact remains that if we want

to verify existing programs rather than those created specifically to exercise the

verifier, we must accept source code input, perhaps for a subset of C. Additionally,

even if we are only interested in analysing specially prepared case study programs,

programming by manually constructing control flow graphs is sufficiently tedious

and error-prone to be a serious impediment. Therefore we conclude that to take

hector any further, one must add source code input features.

We noted in Section 2.1.1 that it is fairly easy to use a front-end or compiler to

automatically produce CFGs from source code, and were content to leave it at that.

In hindsight, however, that isn’t quite the end of the story: the problem is that

any counterexample trace found is a trace through the CFG, and not through the

source code. The user has never seen the CFG, and in it, complex statements have

been replaced with groups of simple statements, new variables have been introduced

to temporarily hold intermediate values, and the alternation and repetition struc-

tures have been encoded with simple guarded edges. How, then, could we make

counterexample traces intelligible to the user? We see three possible approaches.

1. Expand the set of statements which can label CFG edges, including

7.3. Future directions 254

e.g. assignment statements with arbitrary expressions on the right

hand side.

The advantage of this approach is that it would make the relationship between

the source code and the CFGs much simpler; counterexample traces would

become easier to follow and could be mapped back to the source code if desired.

Unfortunately there is a serious disadvantage: the abstract successor functions

would have to deal with far more, and far trickier, forms of statement, requiring

more, and more subtle, programming. This would hit hector especially hard:

whereas other tools include one set of abstract successor functions, hector

has one set per analysis module, so the extra cost would be multiplied.

Also, in this approach the semantics of the target programming language be-

come more complicated to define and reason about, so that proving a particu-

lar analysis module sound would become more difficult. Again this increased

difficulty is multiplied by the number of analysis modules.

Finally it is not clear how the introduction of more complex statement forms

would affect the behaviour of formula sharing: since we currently perform one

round of sharing per simple statement, it is conceivable that we may have to

perform several rounds per complex statement to get the same outcome.

2. Compile complex statements down to groups of simple statements,

but hide this from the user.

With this approach we would compile the source code into CFGs replacing

each complex statement with a group of simple statements, and introducing

temporary variables, but we would never let the user see the CFGs. Instead

we would map each abstract counterexample back onto a trace through the

source program, and show this to the user.

We are skeptical about whether this is possible. A recent paper [LF08] dis-

cusses the issue, finding that (in a particular formal setup) there is no sys-

tematic way to faithfully map between analysing at the source code level and

7.3. Future directions 255

analysing at the level of the CFG. In particular, the behaviour of the analysis

at CFG level really does depend on how the temporary variables are treated,

and these variables are not visible at the source code level.

3. Compile complex statements down to groups of simple statements,

admit we are doing it and try to make it palatable.

In this approach, which we prefer, the user would be shown counterexample

traces at CFG level, and would configure the analyses at CFG level, referring

to temporary variables in the configuration where necessary. We would make

CFG-level traces as easy to understand as possible, by annotating each group

of CFG nodes with the source code statement that generated them. We would

also make sure the compilation process was simple and predictable, because

if the compiler performed any clever optimisation or rearrangement of the

code, this would confuse the user. (We would want a simple compiler anyway,

because the correctness of the verification would additionally depend on the

correctness of the compilation.)

Of the three, this approach requires the least work.

7.3.2 Practical and theoretical issue: adding CEGAR facil-

ities

In Section 5.3 we described the abstract-check-fine loop, by which we obtained bet-

ter and better configurations for the analyses, until we had verified the program.

The process of improving the configuration to eliminate the current counterexample

was performed by hand at each stage, which is a time-consuming and sometimes

frustrating process and requires expertise. It is unsurprising, then, that in recent

years much research has been done into methods of automating this process.

Such methods, known as Counterexample-Guided Abstraction Refinement or CE-

GAR [CGJ+00], perform a systematic scan of the abstract counterexample trace,

7.3. Future directions 256

and then suggest a better configuration. CEGAR has been very successfully used

for tools based on predicate abstraction (e.g. [BR02, HJMS02]), where it suggests

new abstraction predicates; this is crucial in the success of Microsoft’s Static Driver

Verifier [BBC+06], because it enables the verifier to run fully automatically and

thus places verification technology at the fingertips of non-expert users. CEGAR

methods have also been developed for TVLA which suggest new instrumentation

predicates [LRS05].

We believe that adding such features to hector is an important goal for two reasons.

1. CEGAR can make verifications much easier to perform.

A good implementation of CEGAR would allow hector to verify programs

with much less user guidance, so that verifying programs would become eas-

ier. This would open the door to building a moderate collection of verified

programs, which in turn would allow us to gain more insight into how module-

based verification works: we could search for common patterns of sharing, test

the effect of new optimisations across a range of examples, etc..

2. Module-based CEGAR is an interesting research problem in its own

right.

The module-based design of hector creates new issues for CEGAR which do

not arise in single-domain systems.

Firstly, because hector runs several analyses together, how do we decide

which one to reconfigure? For example, we may have the choice between

adding a new predicate to the predicate abstraction module, or adding a new

instrumentation predicate to the TVLA module.

This is reminiscent of the two-level CEGAR algorithm in MAGIC [CCG+04],

which decides whether to introduce more abstraction predicates, or refine its

use of a technique called action abstraction. However, in MAGIC these two

abstractions are layered one on top of the other, rather than side-by-side as

7.3. Future directions 257

in our work. A similar issue is encountered in work on automatically proving

termination [CPR05], where the system must choose whether to refine the

choice of abstraction predicates, or refine the set of relations used to try to

establish termination.

Secondly, is it possible to successfully perform CEGAR with a generic algo-

rithm in the broker, or would specialised CEGAR routines be needed for each

analysis module? In either case, what changes to the module interface are re-

quired? In terms of generic CEGAR, our interest is aroused by [GR06] which

shows how to perform CEGAR on any abstract domain which uses a widening

operator to make the analysis converge. The idea is that, for any spurious

counterexample, one can pinpoint which application of widening is to blame,

and then widen less aggressively at that point in the analysis. This method is

appealingly simple but not directly applicable to our framework (because for

a start we do not use widening).

7.3.3 Theoretical issue: generalising interpolation

We finish by outlining a broad theoretical question. Propositional logic has the

following property: If Φ and Θ are formulae and ¬(Φ∧Θ) is valid, then there exists

a formula Ψ such that: Φ → Ψ is valid, Ψ → ¬Θ is valid and Ψ contains only

propositional letters occurring in both Φ and Θ. This is a slight reformulation of

the well-known Craig Interpolation Theorem. Analogous results hold for various

other logics including first order logic (e.g. [CK90]). The formula Ψ is known as

an interpolant because it lies between Φ and ¬Θ in the entailment ordering. In a

sense, the above result says that, given two formulae Φ and Θ which are mutually

inconsistent, the reason for their inconsistency can be expressed using only their

common propositional letters. A wider question hinted at by such theorems is:

given two mutually inconsistent formulae Φ and Θ, what “logical resources” are

required to express the reason for their inconsistency?

7.4. Closing remarks 258

Let us make a loose analogy between the above result and our module-based verifi-

cation system. Suppose we have two analysis modules M and N , and pick out

two abstract values a ∈ M.T and a′ ∈ N.T . Suppose that these abstract values are

mutually inconsistent in the sense that M.γ(a)∩N.γ(a′) = ∅. The question is then:

what logical machinery is required to witness the inconsistency between a and a′,

i.e., for what logics T is there guaranteed to exist a formula Ψ ∈ T such that a

entails Ψ, and Ψ “rules out” a′? The idea is that this Ψ would be the formula shared

by the module M , and that the other module N would then use Ψ to notice the

inconsistency, and generate no successors.

A concrete instance of this question might be: if we have an arbitrary symbolic

heap expressed in a fragment of separation logic, and an abstract TVLA heap (i.e.

a three-valued heap model), and if the two are mutually inconsistent, is this fact

witnessed by a quantifier-free TC formula?

In general we would like to know, for any particular combination of modules, what

sort of common logic T will be sufficient to allow the detection of inconsistency

where it exists. If T is quite a “small” logic, for instance, this may allow us to

restrict our attention to formulae of T when propagating information. We are

unaware of any existing work in this direction.

7.4 Closing remarks

Sadly, we have reached the end of our journey through the world of cooperatively

combining program verifiers, which began in Chapter 1 when, dissatisfied with the

limited applicability of the specialised program verification and analysis systems in

current use, we decided to go in search of a way to combine these specialised systems

modularly in order to exploit the advantages of each.

Before setting out, we surveyed the surrounding landscape: in Chapter 2 we ex-

7.4. Closing remarks 259

amined existing abstraction methods, noting their strengths and weaknesses, and

came across the open product operator which had been used to combine domains

for optimisation of logic programs.

The first stage of our journey proper, Chapter 3, took us into uncharted territory.

We designed a modular verification framework, based on the concept of analysis

modules, and formalised all aspects of it. In the next leg, Chapter 4, we implemented

the framework to a very useable level in our software model checker hector.

Chapter 5, in which we conducted a case study, using hector to verify an imple-

mentation of the puzzle game MineSweeper, confirmed that our efforts so far had

been very worthwhile: combining domains in a modular way was shown to extend

the range of programs that can be verified, and increase the ease and speed of veri-

fication. In Chapter 6 we pressed on a little further in our travels, before stopping

to reflect in this Chapter on how far we have come.

Throughout this thesis, we have aimed to share with the reader not just the main

points of our work, but also the little nuggets of information we have learned along

the way. It is our sincere hope that our results, and the open questions we have iden-

tified, will help justify and motivate further research on (some form of) automatic

modular combination of abstraction domains.

Appendix A

A.1 Three-valued logic

The idea of three-valued logic, as in [Kle52], is to use an extra truth value unknown

in addition to the usual true and false. Intuitively unknown is used to represent lack

of knowledge about a particular aspect of a system.

Thus, three-valued logic accounts very naturally for the fact that the process of

abstraction gives rise to only partial information, and allows us to make the most

of the information we do have: even if a formula Φ contains a subformula which

evaluates to unknown, we may still be able to obtain a definite truth value for Φ.

For example, in propositional three-valued logic, the propositional letters p, q, r, . . .

are assigned truth values from {true, false, unknown}. The three-valued semantics

of each connective is given in Figure A.1. Consider the formula

p ∨ (q ∧ r)

under the truth assignment

{p 7→ true, q 7→ true, r 7→ unknown}

The subformula q ∧ r evaluates to unknown because the truth of r is unknown;

260

A.1. Three-valued logic 261

A ¬A
true false

unknown unknown
false true

A B A ∧B A ∨B A → B A ↔ B
true true true true true true
true unknown unknown true unknown unknown
true false false true false false

unknown true unknown true true unknown
unknown unknown unknown unknown unknown unknown
unknown false false unknown unknown unknown

false true false true true false
false unknown false unknown true unknown
false false false false true true

Figure A.1: Three-valued compositional semantics for logical connectives.

nevertheless, the formula as a whole evaluates to true.

Note that the same three-valued semantics for connectives emerges if one lifts the

two-valued connectives to the level of sets of truth values, applying them pointwise,

and reads {true, false} as unknown.

Three-valued semantics have also been given to temporal logics (e.g. [HJS01]) and

first-order predicate logics [NNS01]. The TVLA system discussed in Subsection 2.5.3

(page 65 onwards) uses models of three-valued predicate logic to represent sets of

possible program heaps; another use of three-valued logic is described in [GHJ01].

A.1.1 Compositional semantics vs. thorough semantics

A simple structural recursion suffices to evaluate formulae according to the seman-

tics of Figure A.1, and for this reason those semantics are called compositional.

Unfortunately however, the compositional semantics do not always behave as we

A.1. Three-valued logic 262

would like. For example, evaluating the formula

(p ∨ ¬p) ∧ q

under the truth assignment A := {p 7→ unknown, q 7→ true} produces the result

unknown, yet in every two-valued truth assignment consistent with A (namely {p 7→

true, q 7→ true} and {p 7→ false, q 7→ true}) the formula evaluates to true.

Intuitively this is because the compositional semantics consider that p might be true

in one disjunct, and simultaneously false in another, which cannot really happen, of

course. This effect is not confined to formulae containing a tautology.

Note that even though the formulae (p∨¬p)∧ q and q are equivalent in two-valued

logic, they behave differently under the compositional three-valued semantics; q

always gives a more precise result than (p ∨ ¬p) ∧ q.

This leads to the definition of a thorough or supervaluational semantics [vF69], which

evaluates the formula in all two-valued truth assignments that are consistent with

the three-valued one; if the results of this are all true (resp. all false) then the

thorough semantics produces true (resp. false), and unknown otherwise.

The thorough semantics gives answers which are at least as good as, and may be more

precise than, those given by the compositional semantics, but thorough checking is

usually more computationally expensive than compositional checking.

Works comparing the compositional and thorough semantics include [RLS02] for

propositional logic, [AH06] for CTL ∩ LTL and [BG00, GH05] for other temporal

logics.

A.2. Tables for sign analysis 263

A.2 Tables for sign analysis

x y x = y x < y x ≤ y

pos pos unknown unknown unknown

pos zero false false false

pos neg false false false

pos any unknown unknown unknown

zero pos false true true

zero zero true false true

zero neg false false false

zero any unknown unknown unknown

neg pos false true true

neg zero false true true

neg neg unknown unknown unknown

neg any unknown unknown unknown

any pos unknown unknown unknown

any zero unknown unknown unknown

any neg unknown unknown unknown

any any unknown unknown unknown

A.2. Tables for sign analysis 264

x y x + y x− y x× y

pos pos pos any pos

pos zero pos pos zero

pos neg any pos neg

pos any any any any

zero pos pos neg zero

zero zero zero zero zero

zero neg neg pos zero

zero any any any zero

neg pos any neg neg

neg zero neg neg zero

neg neg neg any pos

neg any any any any

any pos any any any

any zero any any zero

any neg any any any

any any any any any

x allocdj(x)

pos unknown

zero false

neg false

any unknown

A.3. Full soundness conditions for analysis modules 265

A.3 Full soundness conditions for analysis mod-

ules

sound-m-init There exists a ∈ init(·) such that (sstart, sstart) ∈ γ(a).

sound-share-skip If

1. π, s0
l,s−→ l′, s

2. (s0, s) ∈ γ(a)

then (s0, s, s) ∈ Jshare(a, Skip, π)K{0,1,C}

sound-succ-skip If

1. π, s0
l,s−→ l′, s

2. (s0, s) ∈ γ(a)

3. (s0, s, s) ∈ JΦK{0,1,C}

then there exists a′ ∈ succ(a, Skip, π, Φ) such that (s0, s) ∈ γ(a′).

sound-share-varcopy If

1. π, s0
l,s−→ l′, s′

2. (s0, s) ∈ γ(a)

3. s = (e, h, A)

4. s′ = (e′, h, A)

5. e′ = e⊕ {u 7→ e(v)}

then (s0, s, s
′) ∈ Jshare(a, VarCopy(u, v), π)K{0,1,C}

sound-succ-varcopy If

1. π, s0
l,s−→ l′, s′

2. (s0, s) ∈ γ(a)

A.3. Full soundness conditions for analysis modules 266

3. s = (e, h, A)

4. s′ = (e′, h, A)

5. e′ = e⊕ {u 7→ e(v)}

6. (s0, s, s
′) ∈ JΦK{0,1,C}

then there exists a′ ∈ succ(a, VarCopy(u, v), π, Φ) such that (s0, s
′) ∈ γ(a′).

sound-share-assignconst If

1. π, s0
l,s−→ l′, s′

2. (s0, s) ∈ γ(a)

3. s = (e, h, A)

4. s′ = (e′, h, A)

5. e′ = e⊕ {u 7→ k}

then (s0, s, s
′) ∈ Jshare(a, AssignConst(u, k), π)K{0,1,C}

sound-succ-assignconst If

1. π, s0
l,s−→ l′, s′

2. (s0, s) ∈ γ(a)

3. s = (e, h, A)

4. s′ = (e′, h, A)

5. e′ = e⊕ {u 7→ k}

6. (s0, s, s
′) ∈ JΦK{0,1,C}

then there exists a′ ∈ succ(a, AssignConst(u, k), π, Φ) such that (s0, s
′) ∈

γ(a′).

sound-share-arith If

1. π, s0
l,s−→ l′, s′

A.3. Full soundness conditions for analysis modules 267

2. (s0, s) ∈ γ(a)

3. s = (e, h, A)

4. s′ = (e′, h, A)

5. e′ = e⊕ {u 7→ e(v1)⊗ e(v2)}

then (s0, s, s
′) ∈ Jshare(a, Arith(u, v1,⊗, v2), π)K{0,1,C}

sound-succ-arith If

1. π, s0
l,s−→ l′, s′

2. (s0, s) ∈ γ(a)

3. s = (e, h, A)

4. s′ = (e′, h, A)

5. e′ = e⊕ {u 7→ e(v1)⊗ e(v2)}

6. (s0, s, s
′) ∈ JΦK{0,1,C}

then there exists a′ ∈ succ(a, Arith(u, v1,⊗, v2), π, Φ) such that (s0, s
′) ∈ γ(a′).

sound-share-fieldread If

1. π, s0
l,s−→ l′, s′

2. (s0, s) ∈ γ(a)

3. s = (e, h, A)

4. s′ = (e′, h, A)

5. e(v) ∈ A

6. e′ = e⊕ {u 7→ h(f, e(v))}

then (s0, s, s
′) ∈ Jshare(a, FieldRead(u, v, f), π)K{0,1,C}

sound-succ-fieldread If

1. π, s0
l,s−→ l′, s′

A.3. Full soundness conditions for analysis modules 268

2. (s0, s) ∈ γ(a)

3. s = (e, h, A)

4. s′ = (e′, h, A)

5. e(v) ∈ A

6. e′ = e⊕ {u 7→ h(f, e(v))}

7. (s0, s, s
′) ∈ JΦK{0,1,C}

then there exists a′ ∈ succ(a, FieldRead(u, v, f), π, Φ) such that (s0, s
′) ∈

γ(a′).

sound-share-fieldwrite If

1. π, s0
l,s−→ l′, s′

2. (s0, s) ∈ γ(a)

3. s = (e, h, A)

4. s′ = (e, h′, A)

5. e(v) ∈ A

6. h′ = h⊕ {(f, e(v)) 7→ e(u)}

then (s0, s, s
′) ∈ Jshare(a, FieldWrite(v, f, u), π)K{0,1,C}

sound-succ-fieldwrite If

1. π, s0
l,s−→ l′, s′

2. (s0, s) ∈ γ(a)

3. s = (e, h, A)

4. s′ = (e, h′, A)

5. e(v) ∈ A

6. h′ = h⊕ {(f, e(v)) 7→ e(u)}

7. (s0, s, s
′) ∈ JΦK{0,1,C}

A.3. Full soundness conditions for analysis modules 269

then there exists a′ ∈ succ(a, FieldWrite(v, f, u), π, Φ) such that (s0, s
′) ∈

γ(a′).

sound-share-new If

1. π, s0
l,s−→ l′, s′

2. (s0, s) ∈ γ(a)

3. s = (e, h, A)

4. s′ = (e′, h, A′)

5. e(v) > 0

6. a > 0

7. {a, a + 1, . . . , a + e(v)− 1} ∩ A = ∅

8. A′ = A ∪ {a, a + 1, . . . , a + e(v)− 1}

9. e′ = e⊕ {u 7→ a}

then (s0, s, s
′) ∈ Jshare(a, New(u, v), π)K{0,1,C}

sound-succ-new If

1. π, s0
l,s−→ l′, s′

2. (s0, s) ∈ γ(a)

3. s = (e, h, A)

4. s′ = (e′, h, A′)

5. e(v) > 0

6. a > 0

7. {a, a + 1, . . . , a + e(v)− 1} ∩ A = ∅

8. A′ = A ∪ {a, a + 1, . . . , a + e(v)− 1}

9. e′ = e⊕ {u 7→ a}

10. (s0, s, s
′) ∈ JΦK{0,1,C}

A.3. Full soundness conditions for analysis modules 270

then there exists a′ ∈ succ(a, New(u, v), π, Φ) such that (s0, s
′) ∈ γ(a′).

sound-succ-call If

1. π, s0 −→ l, s : π′, s′0

2. (s0, s) ∈ γ(a)

3. s = (e, h, A)

4. s′0 = (e′, h, A)

5. e′ (x) =


e (pi) if x is fi

0 otherwise

where [f1, . . . , fj] = Formals (π′)

then there exists a′ ∈ succC(a, π, π′, [p1, . . . , pk]) such that (s′0, s
′
0) ∈ γ(a′).

sound-succ-return If

1. π, s0 −→ l1, s1 : π′, s2

2. π′, s2
p′
−→ l3, s3

3. (s0, s1) ∈ γ(a)

4. (s2, s3) ∈ γ(a′)

5. Edges(Graph(π))(l1) = Call(u, π′, [p1, . . . , pk]) : l

6. Edges(Graph(π′))(l3) = Return(v)

7. s1 = (e1, h1, A1)

8. s2 = (e2, h1, A1)

9. s3 = (e3, h3, A3)

10. s = (e, h3, A3)

11. e2 (x) =


e1 (pi) if x is fi

0 otherwise

where [f1, . . . , fj] = Formals (π′)

12. e = e1 ⊕ {u 7→ e3 (v)}

then there exists a′′ ∈ succR(a, a′, π, π′, u, v, [p1, . . . , pk]) such that (s0, s) ∈

γ(a′).

Bibliography

[AH06] Adam Antonik and Michael Huth. Efficient Patterns for Model Check-
ing Partial State Spaces in CTL ∩ LTL. Electronic Notes in Theoret-
ical Computer Science, 158:41–57, May 2006. Proceedings of the 22nd
Annual Conference on Mathematical Foundations of Programming Se-
mantics; 24-27 May 2006, Genova, Italy.

[Apt81] Krzysztof Apt. Ten years of Hoare’s logic: A survey—part I. ACM
Trans. Program. Lang. Syst., 3(4):431–483, 1981.

[Bac88] Ralph-Johan Back. A calculus of refinements for program derivations.
Acta Informatica, 25(6):593–624, 1988.

[BBC+06] Thomas Ball, Ella Bounimova, Byron Cook, Vladimir Levin, Jakob
Lichtenberg, Con McGarvey, Bohus Ondrusek, Sriram K. Rajamani,
and Abdullah Ustuner. Thorough static analysis of device drivers. ACM
SIGOPS Operating Systems Review, 40(4):73–85, 2006.

[BCC+07] Josh Berdine, Cristiano Calcagno, Byron Cook, Dino Distefano, Pe-
ter W. O’Hearn, Thomas Wies, and Hongseok Yang. Shape analysis
for composite data structures. In CAV (Computer Aided Verification),
volume 4590 of Lecture Notes in Computer Science, pages 178–192.
Springer-Verlag, July 2007.

[BCM+92] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L.
Dill, and L. J. Hwang. Symbolic model checking: 1020 states and be-
yond. Information and Computation, 98:142–170, 1992.

[BCO04] Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. A decidable
fragment of separation logic. In FSTTCS 2004 (Foundations of Software
Technology and Theoretical Computer Science), volume 3328 of LNCS,
pages 97–109. Springer, December 2004.

[BCO05a] Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. Smallfoot:
Modular automatic assertion checking with separation logic. In FMCO
(Formal Methods for Components and Objects), pages 115–137, 2005.

[BCO05b] Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. Symbolic
execution with separation logic. In APLAS 2005, volume 3780 of LNCS,
pages 52–68. Springer-Verlag, 2005.

271

BIBLIOGRAPHY 272

[BG00] Glenn Bruns and Patrice Godefroid. Generalized model checking: Rea-
soning about partial state spaces. Lecture Notes in Computer Science,
1877:168+, 2000.

[BG03] Doron Bustan and Orna Grumberg. Simulation-based minimization.
ACM Trans. Comput. Logic, 4(2):181–206, 2003.

[BHMV05] Ahmed Bouajjani, Peter Habermehl, Pierre Moro, and Tomas Vojnar.
Verifying programs with dynamic 1-selector-linked structures in regular
model checking. In TACAS, pages 13–29, 2005.

[BHRZ03] Roberto Bagnara, Patricia Hill, Elisa Ricci, and Enea Zaffanella. Pre-
cise widening operators for convex polyhedra. In SAS (Static Analysis
Symposium), pages 337–354, 2003.

[BHT07] Dirk Beyer, Thomas A. Henzinger, and Grégory Théoduloz. Config-
urable software verification: Concretizing the convergence of model
checking and program analysis. In CAV, pages 504–518, 2007.

[BKW+07] Charles Bouillaguet, Viktor Kuncak, Thomas Wies, Karen Zee, and
Martin C. Rinard. Using first-order theorem provers in the Jahob data
structure verification system. In VMCAI, pages 74–88, 2007.

[BLS05] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec#
Programming System: An Overview, volume 3362 of Lecture Notes in
Computer Science, pages 49–69. Springer, January 2005.

[BPR01] Thomas Ball, Andreas Podelski, and Sriram K. Rajamani. Boolean and
Cartesian abstraction for model checking C programs. Lecture Notes in
Computer Science, 2031:268+, 2001.

[BR00] Thomas Ball and Sriram K. Rajamani. Bebop: A symbolic model
checker for Boolean programs. In Proceedings of SPIN 2000, volume
1885 of LNCS, pages 113–130. Springer Verlag, 2000.

[BR01] Thomas Ball and Sriram K. Rajamani. Automatically validating tem-
poral safety properties of interfaces. In SPIN 2001: Proceedings of the
8th international SPIN workshop on model checking of software, volume
2057 of LNCS, pages 103–122. Springer Verlag, 2001.

[BR02] Thomas Ball and Sriram K. Rajamani. Generating abstract explana-
tions of spurious counterexamples in C programs. Technical report,
Microsoft, 2002. MSR-TR-2002-09.

[BTSR04] Lars Birkedal, Noah Torp-Smith, and John Reynolds. Local reasoning
about a copying garbage collector. In POPL 04 (Principles of Program-
ming Languages), pages 220–231, 2004.

[CC76] Patrick Cousot and Radhia Cousot. Static determination of dynamic
properties of programs. In Proceedings of the Second International Sym-
posium on Programming, pages 106–130, Paris, France, 1976.

BIBLIOGRAPHY 273

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: a uni-
fied lattice model for static analysis of programs by construction or
approximation of fixpoints. In POPL 77 (Principles of Programming
Languages), pages 238–252, Los Angeles, California, 1977. ACM Press,
New York.

[CC79] Patrick Cousot and Radhia Cousot. Systematic design of program anal-
ysis frameworks. In POPL 79 (Princples of Programming Languages),
pages 269–282, 1979.

[CC92a] Patrick Cousot and Radhia Cousot. Abstract interpretation and appli-
cation to logic programs. Journal of Logic Programming, 13(2-3):103–
179, 1992.

[CC92b] Patrick Cousot and Radhia Cousot. Comparing the Galois connec-
tion and widening/narrowing approaches to abstract interpretation. In
PLILP ’92: Proceedings of the 4th International Symposium on Pro-
gramming Language Implementation and Logic Programming, pages
269–295, London, UK, 1992. Springer-Verlag.

[CC04] Robert Clarisó and Jordi Cortadella. The octahedron abstract domain.
In SAS (Static Analysis Symposium), pages 312–327, 2004.

[CCF+05] Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, An-
toine Miné, David Monniaux, and Xavier Rival. The ASTREE analyzer.
In ESOP, pages 21–30, 2005.

[CCF+06] Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, An-
toine Miné, David Monniaux, and Xavier Rival. Combination of ab-
stractions in the ASTREE static analyzer. In ASIAN, pages 272–300,
2006.

[CCG+02] Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia, Fausto
Giunchiglia, Marco Pistore, Marco Roveri, Roberto Sebastiani, and Ar-
mando Tacchella. NuSMV version 2: An opensource tool for symbolic
model checking. In Proc. International Conference on Computer-Aided
Verification (CAV 2002), volume 2404 of LNCS, Copenhagen, Denmark,
July 2002. Springer.

[CCG+04] Sagar Chaki, Edmund M. Clarke, Alex Groce, Joël Ouaknine, Ofer
Strichman, and Karen Yorav. Efficient verification of sequential and
concurrent C programs. Formal Methods in System Design, 25(2-3):129–
166, 2004.

[CCH00] Agostino Cortesi, Baudouin Le Charlier, and Pascal Van Hentenryck.
Combinations of abstract domains for logic programming: Open prod-
uct and generic pattern construction. Science of Computer Program-
ming, 38(1-3):27–71, August 2000.

[CDD+08] David Cunningham, Werner Dietl, Sophia Drossopoulou, Adrian Fran-
calanza, Peter Müller, and Alexander Summers. Universe types for

BIBLIOGRAPHY 274

topology and encapsulation, 2008. To appear in post-proceedings of
FMCO 07 (Formal Methods for Components and Objects).

[CDE07] David Cunningham, Sophia Drossopoulou, and Susan Eisenbach. Uni-
verse types for race safety. In VAMP 07 (Verification and Analysis of
Multi-threaded Java-like Programs), pages 20–51, September 2007.

[CE82] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of syn-
chronization skeletons using branching-time temporal logic. In Logic of
Programs Workshop, pages 52–71, London, UK, 1982. Springer-Verlag.

[CGJ+00] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Hel-
mut Veith. Counterexample-guided abstraction refinement. In CAV,
pages 154–169, 2000.

[CGL92] Edmund M. Clarke, Orna Grumberg, and David E. Long. Model check-
ing and abstraction. In POPL 92 (Principles of Programming Lan-
guages), pages 343–354, New York, 1992. ACM.

[CH78] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear
restraints among variables of a program. In POPL 78 (Principles of
Programming Languages), pages 84–97, Tucson, Arizona, 1978. ACM
Press, New York.

[CH07] Nathaniel Charlton and Michael Huth. Hector: software model checking
with cooperating analysis plugins. In Proc. International Conference
on Computer-Aided Verification (CAV 2007), volume 4590 of LNCS.
Springer, 2007.

[CH08] Nathaniel Charlton and Michael Huth. Falsifying safety properties
through games on over-approximating models, 2008. In proceedings
of Workshop on Reachability Problems (WRP) 2008.

[Cha06a] Nathaniel Charlton. Program verification with interacting analysis
plugins. Formal Aspects of Computing, 2006. Springer Verlag, DOI:
10.1007/s00165-007-0029-4.

[Cha06b] Nathaniel Charlton. Program verification with interacting analysis plu-
gins. Technical Report 2006/11, Department of Computing, Imperial
College London, September 2006. ISSN 1469-4174.

[Cha06c] Nathaniel Charlton. Verification of Java programs with interacting anal-
ysis plugins. Electronic Notes in Theoretical Computer Science, 145,
Proceedings of the 5th International Workshop on Automated Verifica-
tion of Critical Systems (AVoCS 2005):131–150, 2006.

[CK90] Chen Chung Chang and Jerome Keisler. Model Theory (3rd ed.). Else-
vier, 1990. ISBN 978-0-444-88054-3.

[CL05] Bor-Yuh Evan Chang and K. Rustan M. Leino. Abstract interpretation
with alien expressions and heap structures. In VMCAI’05, volume 3385
of LNCS, pages 147–163. Springer Verlag, 2005.

BIBLIOGRAPHY 275

[CPR05] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Abstraction-
refinement for termination. In SAS (Static Analysis Symposium), vol-
ume 3672 of Lecture Notes in Computer Science, page 15, London, UK,
September 2005. Springer.

[DDH72] Ole-Johan Dahl, Edsger W. Dijkstra, and Tony Hoare. Structured pro-
gramming. Academic Press Ltd., London, UK, 1972. ISBN 0122005503.

[DDP99] Satyaki Das, David L. Dill, and Seungjoon Park. Experience with predi-
cate abstraction. In Computer Aided Verification, volume 1633 of LNCS,
pages 160–171, 1999.

[Dij70] Edsger W. Dijkstra. Notes on Structured Programming. Available as
EWD249 from Dijkstra Archive, April 1970.

[Dij75] Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal
derivation of programs. Commun. ACM, 18(8):453–457, 1975.

[Dis03] Dino Distefano. On model checking the dynamics of object-based soft-
ware: a foundational approach. PhD thesis, University of Twente, 2003.

[DM05] Werner Dietl and Peter Müller. Universes: Lightweight ownership for
JML. Journal of Object Technology (JOT), 4(8):5–32, October 2005.

[DN03] Dennis Dams and Kedar S. Namjoshi. Shape analysis through predicate
abstraction and model checking. In VMCAI 2003: Proceedings of the 4th
International Conference on Verification, Model Checking, and Abstract
Interpretation, pages 310–324, London, UK, 2003. Springer-Verlag.

[DNS05] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theorem
prover for program checking. J. ACM, 52(3):365–473, 2005.

[FL01] Cormac Flanagan and K. Rustan M. Leino. Houdini, an annotation
assistant for ESC/Java. In FME ’01: Proceedings of the International
Symposium of Formal Methods Europe on Formal Methods for Increas-
ing Software Productivity, pages 500–517, London, UK, 2001. Springer-
Verlag.

[FM97] Pascal Fradet and Daniel Le Métayer. Shape types. In POPL 97 (Prin-
ciples of Programming Languages), pages 27–39, New York, 1997. ACM
Press.

[FS00] Alain Finkel and Grégoire Sutre. Decidability of reachability problems
for classes of two counters automata. Lecture Notes in Computer Sci-
ence, 1770:346+, 2000.

[GC06] Arie Gurfinkel and Marsha Chechik. Why waste a perfectly good ab-
straction? In TACAS, pages 212–226, 2006.

[GH05] Patrice Godefroid and Michael Huth. Model checking vs. generalized
model checking: semantic minimization for temporal logics. In Twen-
tieth Annual IEEE Symposium on Logic in Computer Science, pages
158–167, June 2005.

BIBLIOGRAPHY 276

[GHJ01] Patrice Godefroid, Michael Huth, and Radha Jagadeesan. Abstraction-
based model checking using modal transition systems. In CONCUR
2001 - concurrency theory: 12th international conference, Aalborg, Den-
mark, 20 - 25 August 2001, volume 2154 of Lecture Notes in Computer
Science, pages 426–440, 2001.

[GJ02] Patrice Godefroid and Radha Jagadeesan. Automatic abstraction using
generalized model checking. In CAV, pages 137–150, 2002.

[GL00] Amit Goel and William R. Lee. Formal verification of an IBM Core-
Connect� processor local bus arbiter core. In DAC ’00: Proceedings of
the 37th conference on Design Automation, pages 196–200, New York,
2000. ACM.

[GN00] Emden R. Gansner and Stephen C. North. An open graph visualization
system and its applications to software engineering. Software — Prac-
tice and Experience, 30(11):1203–1233, 2000.

[GOR97] Erich Grädel, Martin Otto, and Eric Rosen. Undecidability results on
two-variable logics. In STACS, pages 249–260, 1997.

[GR06] Bhargav S. Gulavani and Sriram K. Rajamani. Counterexample driven
refinement for abstract interpretation. In TACAS, pages 474–488, 2006.

[GS97] Susanne Graf and Hassen Saidi. Construction of abstract state graphs
with PVS. In Proc. 9th International Conference on Computer Aided
Verification (CAV ’97), volume 1254, pages 72–83. Springer Verlag,
1997.

[GT06] Sumit Gulwani and Ashish Tiwari. Combining abstract interpreters. In
PLDI, pages 376–386, 2006.

[GT07] Sumit Gulwani and Ashish Tiwari. Assertion checking unified. In The
8th International Conference on Verification, Model Checking and Ab-
stract Interpretation. Springer, January 2007.

[GW99] Erich Grädel and Igor Walukiewicz. Guarded Fixed Point Logic. In
Proceedings of 14th Annual IEEE Symposium on Logic in Computer
Science, Trento, pages 45–54, 1999.

[HC96] George Hughes and Max Cresswell. A New Introduction to Modal Logic.
1996. ISBN 9780415125994.

[HC01] Manuel Hermenegildo and Daniel Cabeza. The PiLLoW
web programming library. Technical report, School of Com-
puter Science, Technical University of Madrid, January 2001.
http://www.clip.dia.fi.upm.es/Software/pillow/.

[HJMS02] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Gregoire
Sutre. Lazy abstraction. In POPL 02 (Principles of Programming Lan-
guages), pages pp. 58–70. ACM Press, 2002.

BIBLIOGRAPHY 277

[HJS01] Michael Huth, Radha Jagadeesan, and David A. Schmidt. Modal transi-
tion systems: A foundation for three-valued program analysis. In ESOP
’01: Proceedings of the 10th European Symposium on Programming Lan-
guages and Systems, pages 155–169, London, UK, 2001. Springer-Verlag.

[Hoa69] Tony Hoare. An axiomatic basis for computer programming. Commun.
ACM, 12(10):576–580, 1969.

[Hoa73] Tony Hoare. Hints on programming language design. Technical Report
CS-TR-73-403, Stanford University, 1973.

[HS96] Klaus Havelund and Natarajan Shankar. Experiments in Theorem Prov-
ing and Model Checking for Protocol Verification. In FME’96: Indus-
trial Benefit and Advances in Formal Methods, volume 1051 of LNCS,
pages 662–681. Springer-Verlag, 1996.

[IEI04] Andrew Ireland, Bill J. Ellis, and Tommy Ingulfsen. Invariant patterns
for program reasoning. In Proceedings of Third Mexican International
Conference on Artificial Intelligence (MICAI-04), volume 2972 of LNAI,
pages 190–201. Springer-Verlag, 2004.

[Imm98] Neil Immerman. Descriptive Complexity. Springer, 1998. ISBN
0387986006.

[IRR+04] Neil Immerman, Alexander Moshe Rabinovich, Thomas W. Reps,
Shmuel Sagiv, and Greta Yorsh. The boundary between decidability
and undecidability for transitive-closure logics. In CSL’04, volume 3210
of LNCS, pages 160–174. Springer Verlag, 2004.

[JLRS04] Bertrand Jeannet, Alexey Loginov, Thomas W. Reps, and Shmuel Sa-
giv. A relational approach to interprocedural shape analysis. In SAS
(Static Analysis Symposium), pages 246–264, 2004.

[JMG+02] Trevor Jim, Greg Morrisett, Dan Grossman, Michael Hicks, James Ch-
eney, and Yanling Wang. Cyclone: A safe dialect of C. In Proceedings
of the USENIX Annual Technical Conference. USENIX, June 2002.

[Kal90] Anne Kaldewaij. Programming: the derivation of algorithms. Prentice-
Hall, Inc., 1990. ISBN 0-13-204108-1.

[Kle52] Stephen Kleene. Introduction to Metamathematics. North-Holland, Am-
sterdam, 1952. ISBN 0720421039.

[KLZR05] Viktor Kuncak, Patrick Lam, Karen Zee, and Martin Rinard. Impli-
cations of a data structure consistency checking system. In Interna-
tional conference on Verified Software: Theories, Tools, Experiments
(VSTTE, IFIP Working Group 2.3 Conference), Zürich, Switzerland,
10–13th October 2005.

[KM01] Nils Klarlund and Anders Møller. MONA Version 1.4 User Manual.
BRICS Notes Series NS-01-1, Department of Computer Science, Uni-
versity of Aarhus, January 2001.

BIBLIOGRAPHY 278

[KNR05] Viktor Kuncak, Huu Hai Nguyen, and Martin C. Rinard. An algorithm
for deciding BAPA: Boolean algebra with Presburger arithmetic. In
CADE, pages 260–277, 2005.

[Koz83] Dexter Kozen. Results on the propositional mu-calculus. Theor. Com-
put. Sci., 27:333–354, 1983.

[KV01] Orna Kupferman and Moshe Y. Vardi. Model checking of safety prop-
erties. Formal Methods in System Design, 19(3):291–314, 2001.

[LAIR+05] Tal Lev-Ami, Neil Immerman, Tom Reps, Mooly Sagiv, Siddharth Sri-
vastava, and Greta Yorsh. Simulating reachability using first-order logic
with applications to verification of linked data structures. In CADE
2005, volume 3632 of Lecture Notes in Artificial Intelligence. Springer-
Verlag, 2005.

[LAMS04] Tal Lev-Ami, Roman Manevich, and Mooly Sagiv. TVLA: A system
for generating abstract interpreters. In IFIP Congress Topical Sessions,
pages 367–376, 2004.

[Lat03] Timo Latvala. Efficient model checking of safety properties. In Proceed-
ings of the 10th SPIN Workshop on Model Checking of Software (SPIN
2003), 2003.

[LBR06] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design
of JML: a behavioral interface specification language for Java. SIG-
SOFT Softw. Eng. Notes, 31(3):1–38, 2006.

[LF08] Francesco Logozzo and Manuel Fähndrich. On the relative completeness
of bytecode analysis versus source code analysis. In Compiler Construc-
tion, volume 4959 of LNCS, pages 197–212. Springer, 2008.

[LKR05] Patrick Lam, Viktor Kuncak, and Martin Rinard. Hob: A tool for
verifying data structure consistency. In 14th International Conference
on Compiler Construction, volume 3443 of LNCS, April 2005.

[LQ06] Shuvendu K. Lahiri and Shaz Qadeer. Verifying properties of well-
founded linked lists. In POPL 06 (Principles of Programming Lan-
guages), pages 115–126, 2006.

[LR07] Patrick Lam and Martin C. Rinard. Static verification of design con-
straints and software correctness properties in the Hob system. In
IPDPS, pages 1–6, 2007.

[LRS05] Alexey Loginov, Thomas W. Reps, and Shmuel Sagiv. Abstraction
refinement via inductive learning. In CAV, pages 519–533, 2005.

[Mey92] Bertrand Meyer. Eiffel: the language. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1992. ISBN 0132479257.

[Min61] Marvin Minsky. Recursive unsolvability of Post’s problem of ‘tag’ and
other topics in the theory of Turing machines. Annals of Mathematics,
74(3):437–455, 1961.

BIBLIOGRAPHY 279

[Min06] Antoine Miné. Symbolic methods to enhance the precision of numerical
abstract domains. In VMCAI, pages 348–363, 2006.

[MN05] Scott McPeak and George C. Necula. Data structure specifications via
local equality axioms. In CAV 2005, volume 3576 of LNCS. Springer,
2005.

[Mor82] Joseph M. Morris. A general axiom of assignment / Assignment and
linked data structures. In Theoretical Foundations of Programming
Methodology, pages 25–41. D. Reidel Publishing Company, 1982.

[Mor94] Carroll Morgan. Programming from specifications (2nd ed.). Prentice
Hall International (UK) Ltd., Hertfordshire, United Kingdom, 1994.
ISBN 0-13-123274-6.

[MS01] Anders Møller and Michael I. Schwartzbach. The pointer assertion logic
engine. In PLDI ’01 (Programming Language Design and Implementa-
tion), pages 221–231, New York, 2001. ACM Press.

[Nel83] Greg Nelson. Verifying reachability invariants of linked structures. In
POPL 83 (Principles of Programming Languages), pages 38–47, New
York, 1983. ACM Press.

[NNH99] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of
Program Analysis. Springer-Verlag New York, Inc., Secaucus, NJ, USA,
1999. ISBN 3540654100.

[NNS01] Flemming Nielson, Hanne R. Nielson, and Mooly Sagiv. Kleene’s logic
with equality. Information Processing Letters, 80:131–137, 2001.

[NO79] Greg Nelson and Derek C. Oppen. Simplification by cooperating de-
cision procedures. ACM Trans. Program. Lang. Syst., 1(2):245–257,
1979.

[NR03] Karim Nour and Christophe Raffalli. Simple proof of the completeness
theorem for second-order classical and intuitionistic logic by reduction
to first-order mono-sorted logic. Theoretical Computer Science, 308(1-
3):227–237, 2003.

[ORY01] Peter O’Hearn, John Reynolds, and Hongseok Yang. Local reasoning
about programs that alter data structures. Lecture Notes in Computer
Science, 2142, 2001.

[PBO07] Matthew Parkinson, Richard Bornat, and Peter O’Hearn. Modular ver-
ification of a non-blocking stack. In POPL 07 (Principles of Program-
ming Languages), pages 297–302, 2007.

[PDV01] Corina S. Pasareanu, Matthew B. Dwyer, and Willem Visser. Finding
feasible counter-examples when model checking abstracted Java pro-
grams. In TACAS, pages 284–298, 2001.

BIBLIOGRAPHY 280

[PE04] Jeff H. Perkins and Michael D. Ernst. Efficient incremental algorithms
for dynamic detection of likely invariants. In Proceedings of the ACM
SIGSOFT 12th Symposium on the Foundations of Software Engineering
(FSE 2004), pages 23–32, Newport Beach, CA, USA, November 2–4,
2004.

[Pnu77] Amir Pnueli. The temporal logic of programs. In FOCS (Foundations
of Computer Science), pages 46–57, 1977.

[QS82] Jean-Pierre Queille and Joseph Sifakis. Specification and verification
of concurrent systems in CESAR. In International Symposium on Pro-
gramming, pages 337–351, London, UK, 1982. Springer-Verlag.

[RBHC07] Zvonimir Rakamaric, Roberto Bruttomesso, Alan J. Hu, and Alessandro
Cimatti. Verifying heap-manipulating programs in an SMT framework.
In ATVA, pages 237–252, 2007.

[RCK04] Enric Rodŕıguez-Carbonell and Deepak Kapur. An abstract interpre-
tation approach for automatic generation of polynomial invariants. In
SAS (Static Analysis Symposium), volume 3148 of Lecture Notes in
Computer Science, pages 280–295. Springer-Verlag, 2004.

[RCK07] Enric Rodriguez-Carbonell and Deepak Kapur. Automatic generation of
polynomial invariants of bounded degree using abstract interpretation.
Sci. Comput. Program., 64(1):54–75, 2007.

[RHS95] Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural
dataflow analysis via graph reachability. In POPL 95 (Principles of
Programming Languages), pages 49–61, New York, 1995. ACM.

[RL02] Richard Raimi and James Lear. Silicon debug of a PowerPC� micropro-
cessor using model checking. Form. Methods Syst. Des., 21(1):79–94,
2002.

[RLS02] Thomas W. Reps, Alexey Loginov, and Mooly Sagiv. Semantic mini-
mization of 3-valued propositional formulae. In LICS ’02: Proceedings
of the 17th Annual IEEE Symposium on Logic in Computer Science,
page 40, Washington, DC, USA, 2002. IEEE Computer Society.

[RRL99] Atanas Rountev, Barbara G. Ryder, and William Landi. Data-flow
analysis of program fragments. In ESEC / SIGSOFT FSE, pages 235–
252, 1999.

[RSL03] Thomas W. Reps, Shmuel Sagiv, and Alexey Loginov. Finite differ-
encing of logical formulas for static analysis. In ESOP, pages 380–398,
2003.

[RSY05] Noam Rinetzky, Mooly Sagiv, and Eran Yahav. Interprocedural shape
analysis for cutpoint-free programs. In SAS (Static Analysis Sympo-
sium), pages 284–302, 2005.

BIBLIOGRAPHY 281

[SI99] Jamie Stark and Andrew Ireland. Invariant discovery via failed proof
attempts. Lecture Notes in Computer Science, 1559:271–288, 1999.

[Sis94] A. Prasad Sistla. Safety, liveness and fairness in temporal logic. Formal
Aspects of Computing, 6(5):495–512, 1994.

[SK02] Axel Simon and Andy King. Analyzing string buffers in C. In AMAST
(Algebraic Methodology and Software Technology), pages 365–379, 2002.

[SR05] Alexandru Sălcianu and Martin C. Rinard. Purity and side-effect analy-
sis for Java programs. Technical report, CSAIL, Massachusetts Institute
of Technology, 2005. Amended version of the paper from VMCAI’05.

[SRW99] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric shape
analysis via 3–valued logic. In POPL 99 (Principles of Programming
Languages), pages 105–118, 1999.

[SSM05] Sriram Sankaranarayanan, Henny B. Sipma, and Zohar Manna. Scal-
able analysis of linear systems using mathematical programming. In
Proc. of Verification, Model Checking and Abstract Interpretation (VM-
CAI), volume 3385 of LNCS, pages 21–47, Paris, France, January 2005.
Springer Verlag.

[SW04] Zhendong Su and David Wagner. A class of polynomially solvable range
constraints for interval analysis without widenings and narrowings. In
TACAS, pages 280–295, 2004.

[vF69] Bas van Fraassen. Presuppositions, supervaluations and free logic. In
The Logical Way of Doing Things, pages 67–92. Yale University Press,
New Haven, 1969.

[VRHS+99] Raja Vallée-Rai, Laurie Hendren, Vijay Sundaresan, Patrick Lam, Eti-
enne Gagnon, and Phong Co. SOOT - a Java optimization framework.
In Proceedings of CASCON 1999, pages 125–135, 1999.

[Wre03] Alisdair Wren. Inferring ownership. Master’s thesis, Imperial College,
London, June 2003. MEng4 Thesis.

[WWA+01] Jongwook Woo, Jehak Woo, Isabelle Attali, Denis Caromel, Jean-Luc
Gaudiot, and Andrew L. Wendelborn. Alias analysis for Java with
reference-set representation. In ICPADS, pages 459–466, 2001.

[WZ91] Mark N. Wegman and F. Kenneth Zadeck. Constant propagation with
conditional branches. ACM Trans. Program. Lang. Syst., 13(2):181–210,
1991.

[Yor03] Greta Yorsh. Logical characterizations of heap abstractions. Master’s
thesis, Tel Aviv University, March 2003.

[YRS01] Eran Yahav, Thomas W. Reps, and Mooly Sagiv. LTL model checking
for systems with unbounded number of dynamically created threads and
objects. Technical Report TR-1424, Computer Sciences Department,
University of Wisconsin, March 2001.

BIBLIOGRAPHY 282

[YRS+06] Greta Yorsh, Alexander Moshe Rabinovich, Mooly Sagiv, Antoine
Meyer, and Ahmed Bouajjani. A logic of reachable patterns in linked
data-structures. In FoSSaCS, pages 94–110, 2006.

[YRSW03] Eran Yahav, Thomas W. Reps, Mooly Sagiv, and Reinhard Wilhelm.
Verifying temporal heap properties specified via evolution logic. In Proc.
European Symp. on Programming, ESOP 2003, LNCS, 2003.

[ZKR08] Karen Zee, Viktor Kuncak, and Martin Rinard. Full functional verifi-
cation of linked data structures. In ACM Conf. Programming Language
Design and Implementation (PLDI), 2008.

