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Abstract

Higher-order store means that code can be stored on the mutable heap that
programs manipulate, and is the basis of flexible software that can be changed
or reconfigured at runtime. Specifying such programs is challenging because
higher-order store allows recursion through the store, where new (mutual) re-
cursions between code are set up on the fly. This paper presents a series of for-
mal specification patterns that capture increasingly complex uses of recursion
through the store. To express the necessary specifications we extend the sepa-
ration logic for higher-order store given by Schwinghammer et al. (CSL, 2009),
adding parameter passing, and certain recursively defined families of assertions.
We give proof rules for our extended logic and show their soundness. Finally, we
apply our specification patterns and rules to an example program that exploits
many of the possibilities offered by higher-order store; this is the first larger case
study conducted with logical techniques based on work by Schwinghammer et
al. (CSL, 2009), and shows that they are practical.

Keywords: Hoare logic, higher-order store, separation logic

1. Introduction and motivation

Popular “classic” languages like ML, Java and C provide facilities for ma-
nipulating code stored on the heap at runtime. With ML one can store newly
generated function values in heap cells; with Java one can load new classes at
runtime and create objects of those classes on the heap. Even for C, where the
code of the program is usually assumed to be immutable, programs can dynam-
ically load and unload libraries at runtime, and use function pointers to invoke
their code. Heaps that contain code in this way have been termed higher-order
store.
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This important language feature is the basis of flexible software systems that
can be changed or reconfigured at runtime. For example, the module mecha-
nism of the Linux kernel allows one to load, unload and update code which
extends the functionality of the kernel, without rebooting the system [1]. Ex-
amples of modules include drivers for hardware devices and filesystems, and
executable interpreters that provide support for running new kinds of executa-
bles; by updating function pointers in the “syscall table”, modules can at run
time intercept any system call that the kernel provides. In [2, 3] bugfixing and
upgrading C programs without restarting them is discussed; for instance, a ver-
sion of the OpenSSH server is built that can update itself while running when
a new version becomes available, without disconnecting existing users.

Obtaining logics, and therefore verification methods, for such programs has
been very challenging however, due to the complexity of higher-order heaps
(see for example the discussion in [4]). When using denotational semantics,
the denotation of such a heap is a mixed-variant recursively defined domain.
The recursive nature of the heap complicates matters, because in addition to
loading, updating and deallocating code, programs may “tie knots in the store”
[5], i.e. create new recursions on the fly; this is known as recursion through the
store. In fact, this knot-tying is happening whenever code on the heap is used
in a recursive way, such as in the Visitor pattern [6] which involves a mutual
recursion between the visitor’s methods and the visited structure’s methods.

Existing work [7] and [8] has discussed reasoning about recursion through
the store, but only using the simplest recursion pattern needed to implement the
factorial function by recursion through the store (see our pattern in Section 4
with a fixed code pointer).

To enable logical reasoning about software that uses higher-order store, the
contributions of this paper are as follows.

• We extend the logic of [9], adding parameter passing, a first-order treat-
ment of finite sets, inductively defined predicates and certain recursively
defined families of assertions (Section 3). Proof rules for these extensions
are given and shown to be sound (Section 5).

• We present and classify patterns of formal specification for programs that
recurse through the store, using recursive assertions and nested triples
(Section 4). ([9], on which we build, considered only a very simple form
for specifications.)

• We state a generic “master pattern” including combinations of inductive
and recursive predicate definitions that covers all patterns we identified in
this paper, and argue that the fixpoints needed to give semantics to such
specifications always exist (Section 4.1).

• We apply the specification and proof techniques we developed to an ex-
ample program which exploits many of the possibilities offered by higher-
order store (Section 6). This is the first larger case study conducted with
logical techniques based on [9], and shows that they are practical. We
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give some details of the proofs, and point out that we have developed a
verification tool [10] to support these.

The next section will give an example program which uses higher-order store
and recursion through the store. Before presenting this example program, we
identify some of the possibilities offered by higher-order store.
Remark 1.1. Some possibilities offered by higher-order store.

1. Flexible composition of components: Software components can be
stored on the heap and connected together using code pointers (which in
general leads to recursion through the store). By updating these pointers
the main program can, at runtime, restructure the way the components
are used. Further, if the main program provides a directory listing the
components present, then components can also discover each other dy-
namically.

2. Dynamic, on-demand loading of code: Software components can be
implemented as separate modules which are then dynamically loaded by
the main program. Thus code can be loaded lazily, i.e. only when it is ac-
tually needed. Further, if the main program provides the components with
an interface to the loader, then components can take care of dynamically
loading other components on which they depend.

3. Self-updating code: Software components can be programmed to up-
date themselves, for example periodically checking for newer versions of
themselves on disk or over a network, and replacing themselves when these
become available. This feature may be particularly useful in cases where
stopping the system to perform upgrades is unacceptable.

4. Specialisation of code at runtime: Specialised implementations of
functions can be created at runtime and integrated fully into the system.
E.g. for efficiency purposes, a component may create an implementation of
a function which is specialised to the invocation cases which are occurring
frequently (see [11]).

5. Unloading of code which is no longer needed: The main program
can unload components which are no longer in use. If an interface for
unloading is provided, then components can decide to unload themselves
or each other.

The remainder of this article is structured as follows. Section 2 explains our
running example program. This program will be revisited in Section 6 where it is
sketched how one can show correctness of the sample program using our logic for
higher-order store. Section 3 presents the programming language and assertion
language. In Section 4 we will describe various patterns of specifications for
programs that recurse through the store and present a generic pattern for which
we show existence. The proof rules and their soundness are discussed in Section 5
building on existing work of [9, 12]. Section 7 outlines further research.

This article is an extended version of our conference paper [13] and contains
additional details on inductive definitions, an extended example, two extra pat-
terns, a more general “master pattern”, and more details about proof rules and
soundness proofs.
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2. Our running example program

We now present an idealised but concrete example program which demon-
strates in a simple way some of the possibilities offered by higher-order store and
recursion through the store, of which it makes essential use. We will revisit this
program in Section 6 and show that our logic for higher-order store is capable
of reasoning about all these uses.

Our program performs evaluation of (binary) expressions represented as bi-
nary trees. A tree node is either an integer leaf or a binary fork annotated with
a binary operator. The distinction is effected by labels: “opLbl”, which is 0,
for operators, and “leafLbl”, which is 1, for leaves. For operations we will look
at some typical examples like PLUS, but it is inherent to the approach that
any (binary) operation can be interpreted. This flexibility is achieved by giving
each fork node a pointer to the evaluation procedure to be used to evaluate
the relevant operator. The referenced evaluation procedure “implements” the
meaning of the labeled node. This flexibility goes beyond the classic “visitor”
pattern, which only works for a predefined class of node types. Unary operators
can be included as binary operators which ignore their second argument, and
variables can be included by a distinguished operator VAR, where “VAR n z”
represents the nth variable xn and the expression z is ignored.

Importantly the code implementing the various evaluations of different tree
nodes is not fixed by the main program; instead, each operator evaluation pro-
cedure is implemented as a loadable module, which can be loaded on demand
and a pointer to which can be saved in the tree nodes. This results in the data
structures shown in Fig. 1.

The main program. The code for the main part of our tree evaluator
is given in Fig. 2. The eval [e](~e) statement invokes the code stored in the
heap at address e, with a vector of (value) parameters ~e. The shorthand res
(explained later) simulates reference parameters. The expression ‘λ~x.C’ denotes
an unevaluated procedure with body C, taking formal parameters ~x, as a value;
thus [e] := ‘λ~x.C’ is used to store procedures into the heap. As in ML, all
variables in our language are immutable, so that once they are bound to a
value, this value does not change. This property of the language lets us avoid
side conditions on variables when studying frame rules. Our main program’s
code assumes the following to be in the heap:

1. The input: variable tree is a pointer to a binary tree as described above
situated on the heap; res is a reference cell to store the result of the
evaluation. Because such expression trees can include variables, an as-
sociation list mapping those variables to values is globally available at
address assoclist .

2. Module-loading infrastructure: consists of a linked list storing modules,
pointed to by a constant pointer modlist , and two procedures pointed to
by searchMods and loader . Calling eval [searchMods](opID , res codeaddr)
searches the list of loaded modules for the one implementing operator
opID , returning its address or null (0) if it is not present. Calling the
loader via eval [loader ](opID , res codeaddr) always guarantees a module
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Figure 1: The data structures used by our example program.

implementing operator opID is loaded, loading it if necessary, and return-
ing its address.1

3. A“tree visitor” procedure pointed to by evalTree, whose address is known
to all modules and the main program. Note that this visitor does not
contain the individual procedures for node types as in the standard pattern
because we can directly store pointers to them within the nodes.

The main program first stores the procedure evalTree in the heap before calling
it for the given input tree and result cell. The evaluation procedure will in turn
call the procedures referenced in the tree nodes which may call the evaluation
procedure back, thus giving rise to recursion through the store. For ease of
presentation this code assumes that the tree and a suitable global modlist are
already set up; we do not describe the initial construction of these data struc-
tures. We will, however, demonstrate that further module loading can be done
once the evaluator is already in action, namely from one of the procedures called
by evalTree.

Some illustrative modules. Independently of the main program we can
write the loadable modules starting with the basic ones for the evaluation of

1We could give the code for searchMods but we won’t for brevity. We could also give
the code for loader in terms of a more primitive loading operation, separating out the list
manipulation from the code loading, but a built-in loading operator would still be necessary.
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// constant offsets

const CodePtrO = 1

const LeftO = 2

const RightO = 3

const OpIDO = 4

const ValO = 1

// constant labels for trees

const leafLabel = 1

const opLabel = 0

[evalTree] :=

‘λ tree, resaddr .

let kind = [tree] in

if kind = leafLabel then

let val = [tree + ValO] in [resaddr ] := val

else

let codePtr = [tree + CodePtrO] in

eval [codePtr ](tree, resaddr)

’ ;

eval [evalTree](tree, res res) ;

let disposeTree = new 0 in

[disposeTree] :=

‘λ tree.

let kind = [tree] in

if kind = leafLabel then

free tree ;

free tree + ValO

else

let left = [tree + leftO] in

let right = [tree + rightO] in

free tree ;

free tree + CodePtrO ;

free tree + LeftO ;

free tree + RightO ;

free tree + OpIDO ;

eval [disposeTree](left) ;

eval [disposeTree](right) ’ ;

eval [disposeTree](tree)

Figure 2: Code for the “main program” part of our running example.

nodes that are labeled VAR, PLUS, TIMES etc. The VAR module evaluates its
left subtree to an integer n, and then looks up the value of xn, the variable with
ID n, from the association list (the right subtree is ignored). Fig. 3 contains
an implementation of PLUS. Note how this implementation calls back evalTree
which in turn makes further calls to modules (either for PLUS again or for other
operators): this is mutual recursion through the store.

As well as implementing arithmetic operators, the module mechanism can
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PLUS: ‘λ tree, resaddr .

let left = [tree + LeftO] in

let right = [tree + RightO] in

eval [evalTree](left , res leftVal) ;

eval [evalTree](right , res rightVal) ;

[resaddr ] := leftVal + rightVal ’

WHILE: ‘λ tree, resaddr .

let left = [tree + LeftO] in

let right = [tree + RightO] in

let b = new 0 in

eval [evalTree](left , b) ;

while [b] do

(eval [evalTree](right , resaddr) ;

eval [evalTree](left , b)) ;

free b’

OSCILLATE : ‘λ tree, resaddr .

let left = [tree + LeftO] in

eval [evalTree](left , resaddr) ;

let selfCodeptr = [tree + CodePtrO]

in

let oldCode = [selfCodeptr ] in

[selfCodeptr ] :=

‘λ tree, resaddr .

let right = [tree + RightO] in

eval [evalTree](right , resaddr) ;

let selfCodeptr =

[tree + CodePtrO] in

[selfCodeptr ] := oldCode ’ ’

LOAD OVERWRITE : ‘λ tree, resaddr .

let opcode = [tree + OpIDO] in

eval [loader ](opcode, res procptraddr) ;

[tree + CodePtrO] := procptraddr

eval [evalTree](tree, resaddr)’

COPRIMEGCD : ‘λ tree, resaddr .

eval [loader ](GCD, res gcdCodePtr) ;

eval [loader ](EQUAL, res eqCodePtr) ;

let left = [tree + LeftO] in

let right = [tree + RightO] in

let newfork =

new opLbl, gcdCodePtr , left , right , 0 in

let newoneleaf = new leafLbl, 1 in

[tree] := eqCodePtr ;

[tree + LeftO] := newfork ;

[tree + RightO] := newoneleaf ;

eval [evalTree](tree, resaddr)’

COPRIMEchoice : ‘λ tree, resaddr .

// First find own address in memory

eval [loader ](COPRIME, res selfPtr) ;

// Find out whether the GCD

// operator is already loaded

eval [searchMods](GCD, res gcdPtr) ;

(if gcdPtr = null then

// Overwrite our own code

// with the version that uses LCM

[selfPtr ] := COPRIMELCM

else // Overwrite our own code

// with the version that uses GCD

[selfPtr ] := COPRIMEGCD) ;

eval [evalTree](tree, resaddr)’

Figure 3: Code for some modules demonstrating various uses of higher-order store.
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BINOM: ‘λ tree, resaddr .

let Fact = new ‘λ n, resaddr . FACT ’ in

let left = [tree + LeftO] in

let right = [tree + RightO] in

let leftkind = [left ] in

if leftkind = leafLabel then // if we’re specialising

let n = [left + ValO] in

eval [Fact ](n, res nfact) ;

// Create a new list node with the specialised code in it

let l = [modlist ] in

let newnode = new

‘λ tree, resaddr .

let Fact = new ‘λ n, resaddr . FACT ’ in

let right = [tree + RightO] in

eval [evalTree](right , res k) ;

eval [Fact ](k, res kfact) ;

eval [Fact ](n− k, res nminuskfact) ;

[resaddr ] :=

nfact/(kfact ∗ nminuskfact) ;

free Fact

’, 0, l

in

free Fact ; [modlist ] := newnode ;

// Now change the code pointer for the

// current tree node and recurse

[tree + CodePtrO] := newnode ;

eval [evalTree](tree, resaddr)

else // we’re doing a normal binomial

// calculation, not specialising

eval [evalTree](left , res n) ;

eval [evalTree](right , res k) ;

eval [Fact ](n, res nfact) ;

eval [Fact ](k, res kfact) ;

eval [Fact ](n− k, res nminuskfact) ;

[resaddr ] := nfact/(kfact ∗ nminuskfact) ;

free Fact ’

Figure 4: Code for the BINOM module.
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be used to extend the program in more dramatic ways. We can implement an
operator ASSIGN, so that expression ASSIGN E1 E2 updates the association
list, giving variable xE1

the new value E2, and returns, say, the variable’s new
value. Then we can turn our expression evaluator into an interpreter for a
programming language: we can add modules implementing the usual control
constructs such as sequential composition, alternation and repetition. Fig. 3
gives the implementation for WHILE. We emphasise that the WHILE operator
can only be implemented because the code for each operator decides how often
and when to evaluate the subexpressions; if the main program were in charge of
the tree traversal (i.e. a tree fold was being used), WHILE could not be written.

Further modules in Fig. 3 illustrate more complex uses of higher-order store.
Consider the operator COPRIME which tests whether its two arguments are
coprime. COPRIMEGCD implements this operator, but depends on another
module GCD implementing the greatest common divisor operator. When it
runs, COPRIMEGCD uses the loader procedure provided by the main program
to make sure that the GCD and equality code is in memory, loading them if
necessary; the expression tree is then patched appropriately, and evalTree is
called recursively on the new subtree. One can similarly program an imple-
mentation COPRIMELCM which depends on the least common multiple oper-
ator LCM. The module COPRIMEchoice takes things further: when first run,
it checks the list of currently loaded code to discover whether the GCD mod-
ule is already present. If so, the GCD-based implementation is preferred, and
COPRIMEchoice updates itself in-place with the GCD-based implementation; if
not, the LCM-based implementation is preferred and the code ovewrites itself
with COPRIMELCM.

The LOAD OVERWRITE procedure first loads the code for the tree node’s
opID into the module list, then updates the node’s code pointer before calling
that to evaluate the tree with the freshly loaded procedure. Note that next time
the same fork node is visited the newly loaded procedure is executed straight
away and no more loading occurs. Though we do not do so here, unloading of
code could also be added: a module in the code list not pointed to by any tree
node can be safely disposed.

The operator OSCILLATE chooses to evaluate the left subtree and returns
its result. But it also updates itself with a version that, when evaluated, picks
the right subtree for evaluation and then updates back to the original version. In
this case the code in the module list itself is updated and thus all tree references
pointing to it from the tree are affected by the update.

We finish by examining an even more complicated module BINOM (Fig. 4)
that implements the binomial coefficient operator

(
n
k

)
:= n!/k!(n − k)! (using

some code FACT that calculates factorials).
This implementation demonstrates the specialisation of code at runtime: it

detects cases in which the left subtree (corresponding to n) is an integer literal.
In such cases the implementation calculates n! and generates on the fly an
optimised implementation which reuses the value on all future invocations. The
specialised implementation is added to the list of loaded modules and pays off
each subsequent time the

(
n
k

)
subexpression is evaluated (which may be many
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e ::= 0 | 1 | − 1 | . . . | e1 + e2 | . . . | x | ‘λ~x.C’ Σ ::= x | {e} | ∅ | Σ1 ∪ Σ2

C ::= [e1] := e2 | let y = [e] in C | eval [e](~e) | let x = new ~e in C

| free e | skip | C1;C2 | if e1 = e2 then C1 else C2

P ::= True | False | P1 ∨ P2 | P1 ∧ P2 | P1 ⇒ P2 | ∀x.P | ∃x.P
| e1 = e2 | e1 ≤ e2

| e1 7→ e2 | emp | P1 ? P2

| P(~e) | {P} e(~e) {Q} | P ⊗Q | Σ1 ⊆ Σ2

P ::= R | µk R1(~x1), . . . ,Rn(~xn) . P1, . . . , Pn | I(~P)

I ::= µkind

〈
~R
〉

I1(~x1), . . . , In(~xn). P1, . . . , Pn

Figure 5: Syntax of expressions, commands and assertions.

times if it is inside a while loop, for instance). One sees in the code how the
specialisation is achieved: the value nfact is calculated outside the scope of the
innermost quoted code, but then used within it. We assume that all the tokens
for operators appearing in inputs will be different from 0, so we can use 0 in
the modID field (see Figure 1) when adding dynamically generated code to the
linked list.

One can similarly imagine using code generation for exponentiation opera-
tions where the power is a literal; the generated code will be simply a sequence
of multiplications. (This is essentially the “staged power” example from [14]).

3. The programming and assertion languages

We now introduce the programming and assertion languages we work with.

3.1. The programming language

We use a simple imperative programming language extended with opera-
tions for stored procedures and heap manipulation as described and used in
Section 2. The syntax of the language is shown in Fig. 5, where ~x (resp. ~e)
represents a vector of distinct variables (resp. a vector of expressions). This
language extends that in [9] by providing for the passing of value parameters.
For convenience we employ two abbreviations: we allow ourselves a looping con-
struct while [e] do C, which can be expressed with recursion through the store,
and we write eval [e](~e, res v) ; C as shorthand for

let vaddr = new 0 in (eval [e](~e, vaddr) ; let v = [vaddr ] in C ; free vaddr)
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The expressions in the language are integer expressions, variables, and the
quote expression ‘λ~x.C’ for representing an (unevaluated) procedure C taking
formal parameters ~x. The quotes are useful brackets that help to actually deter-
mine where some stored procedure ends and the top-level code continues. Note
that fv(‘λ~x.C’) := fv(C)− ~x.

The integer or code value denoted by expression e1 can be stored in a heap
cell e0 using [e0]:=e1, and this stored value can later be looked up and bound to
the (immutable) variable y by let y = [e0] in D. In case the value stored in cell
e0 is code ‘λ~x.C’, we can run (or “evaluate”) this code with actual parameters
~e by executing eval [e0](~e). Our language also provides constructs for allocating
and disposing heap cells such as e0 above.

3.2. The assertion language

The assertion language, shown in Fig. 5, follows [9], adding finite sets, more
general recursive definitions and inductive predicates, and with some changes to
accommodate parameter passing. Each assertion describes a property of states,
which consist of an (immutable) environment and a mutable heap. The language
is based on first-order intuitionistic logic with several further extensions:

Separation logic: Our language includes the ?, emp and 7→ connectives of
separation logic [15]. We use some abbreviations to improve readability:
e ∈ Σ := {e} ⊆ Σ, e 7→ := ∃x. e 7→ x and e 7→ P [·] := ∃x. e 7→ x ∧ P [x]
where P [·] is an assertion with an expression hole, such as {Q} ·{R}, · = e
or · ≤ e. Additionally we have e 7→ e0, . . . , en := e 7→ e0? · · ·?(e+n) 7→ en.

Nested triples: Triples are assertions, so they can appear in pre- and post-
conditions of triples. This nested use of triples is crucial because it allows
one to specify stored code behaviourally, i.e. in terms of properties that it
satisfies and not by specifying the intensional properties of the code as e.g.
in [16, 8] . The triple {P} e(~e) {Q} means that e denotes code satisfying
{P} ·{Q} when invoked with parameters ~e. For code that does not expect
any parameters, ~e will have length zero and we write simply {P} e {Q}.

Invariant extension: Intuitively, the invariant extension P ⊗ Q denotes a
modification of P where the pre- and post-conditions of all triples in-
side P (at all nesting depths) are ?-extended with Q. The operator ⊗ is
from [17, 9] and is not symmetric.

Inductively defined predicates: The syntactic category I is for parametric,
(mutually) inductively defined predicates. These are written in the form

µkind

〈
~R
〉

I1(~x1), . . . , In(~xn). P1, . . . , Pn

which creates n inductively defined predicates and then projects out the
kth one. Each Pi may contain free variables from parameters ~xi, free
predicate variables ~R for predicate parameters, and predicate variables
for other (mutually inductively defined) predicates ~I. To ensure that the

11



lseg ::=

µ1
ind I(x, y, σ).(

x = y ∧ σ = ∅ ∧ emp
∨ ∃nxt , σ′ . x 7→ , ,nxt ? I(nxt , y, σ′) ∧ nxt 6= x ∧ σ = σ′ ∪ {x}

)

tree ::=

µ1
ind I(t, τ).

t 7→ leafLbl, ∧ τ = ∅
∨ ∃codePtr , left , right , τ ′, τ ′′.

t 7→ opLbl, codePtr , left , right , ? I(left , τ ′) ? I(right , τ ′′)
∧ τ = {codePtr} ∪ τ ′ ∪ τ ′′



treefork(t, τ) ::=

∃codePtr , left , right , τ ′, τ ′′.
t 7→ opLbl, codePtr , left , right , ? tree(left , τ ′) ? tree(right , τ ′′)
∧ τ = {codePtr} ∪ τ ′ ∪ τ ′′

Figure 6: Inductively defined predicates used to specify and prove our example program.

definition gives rise to an inductively defined predicate a sufficient (but
not necessary) condition on the syntax of inductive definitions is that the
predicates Ii do not appear on the left hand side of implication, inside
universal quantification or nested triples. Note that this is not too strong
a restriction as one can define recursive predicates and use them as actual
parameters for ~R inside inductive ones. The syntactic restrictions will
be discussed in more detail in Theorem 4.1 and their purpose will become
clear from the semantics of inductive predicates presented in Section 5. To
turn a I expression into a predicate (in P) one must supply any predicate

arguments; this explains the form I(~P). We will often omit the empty
brackets 〈〉 and ( ) when inductive predicates does not use any predicate
parameters. Fig. 6 gives the inductive definitions we will use to describe
the linked lists and tree structures in our examples.

We will write lseg[~R, T
~R(·)] as shorthand for the following:

µ1
ind

〈
~R
〉

I(x, y, σ).(
x = y ∧ σ = ∅ ∧ emp

∨ ∃nxt , σ′ . x 7→ T
~R(·), ,nxt ? I(nxt , y, σ′) ∧ nxt 6= x ∧ σ = σ′ ∪ {x}

)
where T

~R(·) is a formula with one expression hole and which may use
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predicate variables from ~R. This allows us to conveniently describe linked

lists where the data stored at each node satisfies the property T
~R(·).

Recursively defined assertions: These (mutually) recursively defined asser-
tions are the key to our work, because they let us reason naturally about
challenging patterns of execution, such as self-updating code and recursion
through the store. We use a similar notation as for inductively defined
predicates, dropping the positive occurrence condition and the ind sub-
script:

µk R1(~x1), . . . ,Rn(~xn) . P1, . . . , Pn

The above indicates that n predicates are defined mutually recursively
with arguments ~xi and bodies Pi, respectively, and the superscript k in-
dicates that the kth such predicate is selected. In order to simplify the
notation for mutually recursively defined predicates we use the notation

(N1, . . . , Nn) := µ R1(x1), . . . ,Rn(xn). P1, . . . , Pn

to abbreviate the following sequence of shorthand definitions:

N1 := µ1 R1(x1), . . . ,Rn(xn). P1, . . . , Pn,

...

Nn := µn R1(x1), . . . ,Rn(xn). P1, . . . , Pn

In Section 4 we will give a grammar for formulae that can be allowed in
those recursive definitions since existence of fixpoints is not automatic.
We write A for an allowed formula (including in Fig. 5), i.e. one that is
of an appropriate form to ensure the existence of a solution.

Remark 3.1. Note that we distinguish recursive and inductive predicates
since for our semantics recursive predicates do not include inductive ones
as is normally the case. This distinction is necessary here as recursive
predicates can only be shown to exist for contractive definitions, whereas
inductive definitions do not have to be contractive to exist but just mono-
tone. This will become clearer in Section 4.

Finite sets: We use a limited first order treatment of finite sets.

4. Specification patterns for recursion through the store

We now explain the need for recursive assertions. Consider the last section of
code in our main program (Fig. 2), which is responsible for disposing of the tree
data structure. Let DT denote the piece of code written into the disposeTree
cell.

Suppose we try to write a precondition for DT . This precondition must
mention all the heap resources needed by DT . Firstly a tree must be present
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at address t, so the precondition must include tree(t, τ) for some τ . Secondly,
since DT makes its recursive call through the heap at the address disposeTree,
the precondition must include disposeTree 7→ B where B is a nested triple. In
particular, B must state that the code stored has the same kind of behaviour
as we specify for DT . But we don’t have DT ’s specification yet, because we are
still trying to formulate its precondition! It appears that we need a specification
which depends on itself. Using the recursively defined predicates we can write
such a specification, namely

∀t.
{
∃τ. tree(t, τ)
? DisposeTreeCode

}
·(t)

{
DisposeTreeCode

}
where we define

DisposeTreeCode ::=

µ1 R . disposeTree 7→ ∀t. {∃τ.tree(t, τ) ? R} · (t) {R}

Note that pointer disposeTree in the above example is assumed to be a global
constant. Otherwise it would have to be included in the parameter list of pred-
icate DisposeTreeCode. We will often use such global constants where appro-
priate to reduce the number of predicate arguments. This tree disposal is one
particular use of recursion through the store. In the rest of this section we
present a series of execution patterns which use recursion through the store, of
increasing complexity. For each execution pattern we identify a corresponding
specification pattern. By pattern we mean the shape of the specification, in
particular the shape of the recursively defined assertion needed to deal with the
recursion through the store.

Recursion via one or finitely many fixed pointers. The tree dis-
posal code above shows the simplest kind of recursion through the store: a
piece of code on the heap (in this case our DT code) invoking itself recur-
sively via a pointer variable. The specification Φ1 in Fig. 7, which generalises
DisposeTreeCode, describes code that operates on a data structure D1, returns
a data structure D2 and calls itself recursively through a pointer g into the
heap. Note that Φ1, like all the specifications in Figures 7 and 8, is a predi-
cate, that is, belongs to syntactic category P. Specification Φ2 (also in Fig. 7)
describes two pieces of code on the heap that call themselves and each other
recursively via two pointers g1 and g2. Note that the pointers g, g1, and g2 are
fixed global constants and thus do not need to appear as arguments of Φ1, and
Φ2, respectively. In general, Φn can be formulated to describe n pieces of code
stored on the heap and able to call each other. (The D,D1, D2, . . . in Fig. 7
are metavariables, and in applications of the patterns they will be replaced by
concrete formulae describing data structures.)

Note that although in this paper we will focus on proving memory safety,
our patterns encompass full functional correctness specifications too. For in-
stance, a factorial function that calls itself recursively through the store can be
functionally specified using the following instance of the Φ1 pattern:

ΦFac := µ1R . g 7→ ∀x, n.{x 7→ n ? r 7→ ? R} · (x){x 7→ 0 ? r 7→ n! ? R}
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Fixed pointers:

Φ1 := µ1R . g 7→ ∀~x.{D1 ? R} · (~p){D2 ? R}

Φ2 := µ1R .
g1 7→ ∀~x1.{D1 ? R} · (~p1){D2 ? R}

? g2 7→ ∀~x2.{D3 ? R} · (~p2){D4 ? R}

Φ′2 := µ1R(c, d) .
g1 7→ c ∧ ∀~x1, c

′, d′. {D1 ? R(c′, d′)} c(~p1) {D2 ? R(c′, d′)}
? g2 7→ d ∧ ∀~x2, c

′, d′. {D3 ? R(c′, d′)} d(~p2) {D4 ? R(c′, d′)}

With dynamic loader:

ΦwithLoader := LoadedCode(g1) ? LoadedCode(g2) ? LoaderCode

where

(LoadedCode,LoaderCode) :=

µ R(a), S .
a 7→ ∀~x. {D ? R(g1) ? R(g2) ? S} · (~p) {D ? R(g1) ? R(g2) ? S} ,
loader 7→ ∀a, ID . {a 7→ } · (a, ID) {R(a)}

List of code:

CLseg1 := µ1R(x, y, σ) . lseg[S, TS
1 (·)](R)(x, y, σ)

where TS
1 (·) is:

∀~x. {∃a, σ.D ? header 7→ a ? S(a, null, σ)} · (~p) {∃a, σ.D ? header 7→ a ? S(a, null, σ)}

List of code (with updates restricted):

CLseg2 := µ1R(x, y, σ) . lseg[S, TS
2 (·)](R)(x, y, σ)

where TS
2 (·) is:

∀~x, a, σ. {D ? header 7→ a ? S(a, null, σ)} · (~p) {D ? header 7→ a ? S(a, null, σ)}

Figure 7: Specification patterns for recursion through the store.

Similar specifications were used in [10] to reason about the mutual recursion
arising between a recursive function implementation and a generic memoiser for
recursive functions. Also similar specifications were used in [18] to reason about
runtime updates to a server.

Note that specification Φ1 allows the code pointed to by g to update it-
self (like our OSCILLATE example), as long as the update is with code which
behaves in the same way. This is because the precondition and postcondition
simply state that code with the required behaviour is present; they do not insist
it be the same code in the poststate as in the prestate. Similarly, in Φ2 the
two pieces of code can update themselves and each other, as long as they do
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Data structure with pointers:

CLseg3 := µ1R(x, y, σ) . lseg[S, TS
3 (·)](R)(x, y, σ)

where TS
3 (·) is

∀~x .
{
∃a, σ, τ. τ ⊆ σ ∧ D(τ)
? header 7→ a ? S(a, null, σ)

}
· (~p)

{
∃a, σ, τ. τ ⊆ σ ∧ D(τ)
? header 7→ a ? S(a, null, σ)

}
Data structure with pointers and a dynamic loader:

(CLseg4,LoaderCode) ::=

µ R1(x, y, σ),R2 .

lseg[S1, S2, T
S1,S2
4 (·)](R1,R2)(x, y, σ),

loader 7→ ∀codeID , code addr addr , σ1 .
∃a .

header 7→ a
? R1(a, null, σ1)
? code addr addr 7→


· (codeID ,
code addr addr)


∃a, r, σ2 . σ1 ∪ {r} ⊆ σ2

∧ header 7→ a
? R1(a, null, σ2)
? code addr addr 7→ r


where TS1,S2

4 (·) is

∀~x .


∃a, σ, τ . τ ⊆ σ ∧

D(τ) ? header 7→ a
? S1(a, null, σ)
? S2

 · (~p)


∃a, σ, τ . τ ⊆ σ ∧

D(τ) ? header 7→ a
? S1(a, null, σ)
? S2



Figure 8: More specification patterns for recursion through the store.

so appropriately. This is good as it accommodates clever uses of higher-order
store, but there are also occasions when it is necessary to explicitly disallow
update. This happens when one has a public and a (stronger) private specifi-
cation for some code; allowing “external” updates to the code might preserve
only the public specification. See Section 9.5 in [19] for an example. In this
case the specification needs to state explicitly that the content of the code re-
mains the same; this is what Φ′2 does. Here, again, pointer variables g1 and g2

are fixed (global variables) but Φ′2 needs two arguments for the code stored in
those pointers (c and d, respectively) which could change in principle. In the
following patterns all changeable values will be represented as arguments to the
specifications (predicates) in question. Where we assume constant values we
use global variables.

Usage with a dynamic loader. As we pointed out, the preceding speci-
fications permit in place update of code. This treats behaviour like that of our
OSCILLATE module, which explicitly writes code onto the heap; but it does
not account for behaviour like that of LOAD OVERWRITE, where a loader
function of the main program is invoked to load other code that is required.
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The specification ΦwithLoader in Fig. 7 describes a situation where two pieces of
code are on the heap, calling themselves and each other recursively; but each
may also call a loader procedure provided by the main program. Note the asym-
metry in the specification of the loader, which could not be expressed using the
invariant extension operator ⊗: R appears in the postcondition but nowhere in
the precondition.

Recursion via a list of code. The next step up in complexity is where a
linked list is used to hold an arbitrary number of pieces of code. We suppose
that each list node has three fields: the code, an ID number identifying the
code, and a next pointer. The ID numbers allow the pieces of code to locate
each other by searching through the list. We suppose that the cell pointed to
by global constant header contains a pointer to the start of the list. To reason

about this setup, we use the lseg[~R, T
~R(·)] shorthand, from page 13, to define

recursively a predicate CLseg1 (Fig. 7) for segments of code lists. We point out
the similarity between these idealised code lists and for example the net device
list that the Linux kernel uses to manage dynamically loaded and unloaded
network device drivers [20].

Note that the pieces of code are free to extend or update the code list in any
way they like, e.g. by updating themselves or adding or updating other code,
as long as any new code also behaves again in the same way. The existential
quantifiers over a and σ in the auxiliary T1(·) are needed to allow for updates
that might change the layout of the list in memory.

A variation restricting code updates. One can vary the above speci-
fication in several ways. For instance, we can allow the pieces of code in the
list to call each other and update each other in-place but prohibit them from
changing the shape of the list in memory. The predicate CLseg2 (Fig. 7) does
this by a simple change of quantifiers, requiring that the starting point a and
locations σ of the list are the same before and after each piece of code runs.

Recursion via a set of pointers stored in a data structure. In the
setup described above with CLseg1 and CLseg2, the pieces of code in the list
found each other using the ID numbers in the list structure. But instead, the
program might set up code pointers referencing code in such a list so that the
pieces of code can invoke each other directly. We suppose that these direct
code pointers live in the data structure D, writing D(τ) for a data structure
whose code pointers collectively point to the set of addresses τ . The recursive
specification we need is CLseg3 given in Fig. 8; the constraint τ ⊆ σ says that
all code pointers in D must point into the code list.

Code lists with pointer structures and a dynamic loader. The most
complex pattern we will look at, CLseg4 in Fig. 8, combines the above idea with
the use of a dynamic loader. This gives the kind of execution pattern found in
our example program, where the data structure D(·) will be tree(tree, ·).

4.1. The master pattern

The specification patterns described above all use the fixpoint operator µ
to build recursively defined predicates. But one must wonder whether this is
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meaningful, since arbitrary functions need not have fixpoints. To ensure the
well-definedness of our specifications, we must show that the required fixpoints
actually exist.

Performing such existence arguments on an ad hoc basis is undesirable, par-
ticularly because some of the specifications feature recursive definitions using
µ intertwined with inductive definitions using µind . To address this, we now
present a “master pattern” describing a whole class of specifications which can
be shown to exist. The appropriate existence proof will be given in Section 5.
The master pattern covers all the specifications in Figures 7 and 8, and all oth-
ers we have encountered a need for, with the caveat that we are not considering
higher-order logic specifications.

Theorem 4.1. The master pattern. (Mutually) recursively defined predi-
cates are guaranteed to exist when they take the form

µk R1(~x1), . . . ,Rn(~xn) . A1, . . . ,An

where Ai comes from the following grammar:

A ::= A ∧A | A ∨A | A ?A
| ∀x.A | ∃x.A
| e 7→ e | emp | e = e | e < e
| {Φ} e(~e ) {Φ} (Φs are arbitrary formulae)

| I(~R)(~e) (I ∈ I is contractive in its
predicate arguments)

A sufficient syntactic condition for

µkind

〈
~R
〉

I1(~x1), . . . , In(~xn). P1, . . . , Pn

to be contractive in ~R in addition to ensuring that the definition gives rise to
an inductive predicate is that each Pi comes from the following grammar:

B ::= B ∧B | B ∨B | B ?B
| ∃x.B
| e 7→ e | emp | e = e | e < e

| ∀~x. {Φ1} e(~e ) {Φ2} (~I 6∈ Φi, i = 1, 2)
| I(~e) (I is one of I1, . . . , IN )

Note that the parameter predicates R can occur in an B formula only within
the assertions Φ1 and Φ2 of a triple definition. The reason for the particular
shape of these grammars is to establish syntactically an approximation to se-
mantic contractiveness in the sense of (ultra)metric spaces. The denotations of
assertions are predicates on heaps (indexed by worlds that represent invariants
added on by ⊗) which can be endowed with a distance function such that they
can be regarded as non-empty one-bounded ultrametric spaces (see Sect. 5). Any
contractive function on such spaces (or here predicates) must have a fixpoint
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by Banach’s fixpoint theorem (see also e.g. [21]). Since our recursive definitions
also involve inductive ones, we have made the occurrences of recursively defined
predicates in inductive ones visible via the 〈 〉 notation. So we actually define
families of inductive predicates which exist due to the assumption that the in-
ductive definitions only use positive occurrences of the inductive predicates. The
grammar for B ensures now that the predicates defined are inductive and that
they are contractive in their parameters. Details will be discussed in Section 5.

Remark 4.2. Unlike the “formal contractiveness” of [12] that includes the ⊗
operator our master pattern does not include ⊗. The reason is that we do not
have a distribution rule for ⊗ (like those in Fig. 10) over recursive definitions,
i.e. the following is not an axiom

(µkP1 · · ·Pn.Φ1 · · ·Φn)⊗R ⇐⇒ µkP1 · · ·Pn.Φ1 · · · (Φk ⊗R) · · ·Φn

Yet, we conjecture that its effect on recursive predicates can be expressed by
unfolding the recursive definition and using the distributions axioms for ⊗ as
found in [9, 12]. The details will appear elsewhere. In case, however, the left
hand side P of P ⊗ R is not recursively defined itself we can already express
the effect of the tensor ⊗ for any concrete instance. For example, one can still
express the specification

µ1 R. x 7→ {y 7→ {a 7→ } · {a 7→ }} · {y 7→ {a 7→ } · {a 7→ }} ⊗ R

by writing

µ1 R,Y. x 7→ {R ?Y} · {R ?Y} , y 7→ {a 7→ ? R} · {a 7→ ? R}

and the proof of this equivalence uses the recursion rules and the distribution
rules for ⊗ as seen in Figures 11 and 10, respectively.

5. Proof rules and Soundness

In this section we state the proof rules we use with our assertion language,
and prove their soundness. We also show that our recursively defined predicates
exist, ie. we give a proof of Theorem 4.1.

5.1. Proof Rules

Our formal proof rules make use of the formal judgment Γ ` {P} ‘C’ {Q}
stating that in variable context Γ the assertion {P} ‘C’ {Q} can be derived
for a command expression C. Since universal validity of assertion {P} ‘C’ {Q}
coincides with the common interpretation of {P}C {Q} (see [9, 12]) we can
identify them and thus often drop the quotes around commands in top level
triples.

Since we use an untyped language, the variable context Γ simply consists of
a list of distinct variables that can appear on the right hand side of `.
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Deref
Γ, x ` {P ? e 7→ x} ‘C’ {Q}

Γ ` {∃x.(P ? e 7→ x)} ‘let x = [e] in C’ {Q}
(x /∈ fv(e,Q))

Update

Γ ` {e 7→ ? P} ‘[e] := e0’ {e 7→ e0 ? P}

New
Γ, x ` {P ? x 7→ ~e} ‘C’ {Q}

Γ ` {P} ‘let x = new ~e in C’ {Q}
(x /∈ fv(P,~e,Q))

Free

Γ ` {e 7→ ? P} ‘free e’ {P}

Skip

Γ ` {P} ‘skip’ {P}

Seq

Γ ` {P} ‘C’ {R} Γ ` {R} ‘D’ {Q}
Γ ` {P} ‘C;D’ {Q}

If
Γ ` {P ∧ e0 = e1} ‘C’ {Q} Γ ` {P ∧ e0 6= e1} ‘D’ {Q}

Γ ` {P} ‘if (e0 = e1) then C else D’ {Q}

Figure 9: Proof rules for program statements.

Most of the rules we use are exactly the same as in [9] where they have been
proved sound. They can be found in Fig. 9 (rules for program statements other
than eval) and Fig. 10 (distribution laws for ⊗, other than for {P} e(~e) {Q}⊗R).
The new proof rules, including rules for running stored code and for the λ binder,
are stated in Fig. 11. There are two groups of new rules: a large number of rules
(for instance (Lambda), (Conseq) and (ForallExists)) are just adaptations
of the rules of [9, 12] to the fact that our procedures now have arguments. The
adaptation of the distribution rule for triples ⊗-TripleDist to procedures with
arguments uses the ◦ notation where R ◦R′ abbreviates (R⊗R′) ? R′.

A second group of rules in Fig. 11 deals with the extended recursive defini-
tions. Rule (Mu) allows for folding and unfolding mutual recursive definitions
and there is a rule for inductive definitions, (MuInd), as well, as described ear-
lier. For inductive definitions we need an induction rule (Induction)2. The
induction rule can be used to prove statements Φ[X\µind I(~x). . . .] provided Φ

2We do not give a rule for mutual induction here as we won’t need it for our examples, but
this could be given analogously.
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(κx.P )⊗R⇔ κx.(P ⊗R) (κ ∈ {∀,∃}, x /∈ fv(R))

(P ⊗R)⊗R′ ⇔ P ⊗ (R ◦R′)

(P ⊕Q)⊗R⇔ (P ⊗R)⊕ (Q⊗R) (⊕ ∈ {⇒,∧,∨, ?})

P ⊗R⇔ P (P is one of True, False, emp, e = e′ or e 7→ ~e)

Figure 10: Distribution axioms for ⊗ (other than for {P} e(~e) {Q} ⊗R).

is an “elimination formula” of the form

∀~x.X(~e) ? Φ0 ⇒ Φ1

for an inductively defined predicate X. Formulae Φ0 and Φ1 must not contain
variable X but can contain ~x and I. The restriction of the formulae Φ is necessary
to guarantee later that they are admissible in X. Any admissible Φ would be
suitable but for the proofs in this paper the above “elimination formulae” are
sufficient.

5.2. Soundness of Proof Rules

We now address the soundness of our rules. Instead of giving semantics
directly to our programming language, we give a translation tr(−) into the
programming language used in [9] ; this translation induces the semantics of
our programs. Assertions are similarly translated into the logic of [9] extended
by finite sets and explicit recursion as described in Fig. 5. The soundness of
those extensions is discussed at the end of this section. The translation tr(−) is
as follows.

Definition 5.1. Translation of programs. Fix a large number N and distin-
guished variables ~w = w1, . . . , wN never used in our (untranslated) programs.
The translation of expressions and commands is structural except for two cases:

tr(‘λx1, . . . , xn.C’) := ‘let x1 = [w1] in . . . let xn = [wn] in tr(C)’

tr(eval [e](e1, . . . , en)) := [w1] := tr(e1) ; . . . ; [wn] := tr(en) ; eval [tr(e)]

By “structural” we mean that the translation simply propagates itself towards
the syntactic leaves, being simply applied to all constituents, as in tr(e1 +e2) =
tr(e1) + tr(e2) and

tr(let x = [e] in C) = let tr(x) = [tr(e)] in tr(C)

Definition 5.2. Translation of assertions and proof obligations. The
translation of assertions is structural except for the clause for Hoare triples,
where

tr({P} e(~e) {Q}) := {tr(P ) ? W (tr(~e))} tr(e) {tr(Q) ? W} with
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Eval
Γ, k ` R(k)⇒ {P ? e 7→ R(·)} k(e1, . . . , en) {Q}

Γ ` {P ? e 7→ R(·)} ‘eval [e](e1, . . . , en)’ {Q}

Lambda
Γ, ~x ` {P [~a\~x]} ‘C’ {Q[~a\~x]}
Γ ` {P} ‘λ~x.C’(~a) {Q}
(variables in ~x,~a all distinct,
and ~a disjoint from fv(C))

ForallExists
Γ ` ∀x. {P} e(~e) {Q} ⇒ {∃x.P} e(~e) {∃x.Q} (x /∈ fv(e,~e))

Conseq
Γ ` P ′ ⇒ P Γ ` Q⇒ Q′

Γ ` {P} e(~e) {Q} ⇒
{
P ′
}
e(~e)

{
Q′
} ?-frame

Γ ` {P} e(~e) {Q} ⇒ {P ? R} e(~e) {Q ? R}

⊗-frame
Γ ` P

Γ ` P ⊗R

⊗-TripleDist
Γ ` {P} e(~e) {Q} ⊗R⇔ {P ◦R} e(~e) {Q ◦R}

Mu

Γ `

(µk R1(~x1), . . . ,Rn(~xn) . A1, . . . ,An)(~e)

⇔

Ak

 R1

. . . ,
Rn

\
µ1 R1(~x1), . . . ,Rn(~xn) . A1, . . . ,An,
. . . ,
µn R1(~x1), . . . ,Rn(~xn) . A1, . . . ,An

 [~xk\~e]

MuInd

Γ `

(µk
ind 〈R1, . . . ,RN 〉 I1(~x1), . . . , In(~xn) . P1, . . . , Pn)[S1, . . . , SN ](~e)

⇔

Pk



I1

. . . ,
In

R1,
. . . ,
RN

\

(µ1
ind

〈
~Ri

〉
I1(~x1), . . . , In(~xn) . P1, . . . , Pn)(~Si),

. . . ,

(µn
ind

〈
~Ri

〉
I1(~x1), . . . , In(~xn) . P1, . . . , Pn)(~Si),

S1,
. . . ,
SN


[~xk\~e]

Induction
Γ ` Φ[X\λ~x.False] Γ,X ` Φ ⇒ Φ[X\P [I, ~R\X, ~S]]

Γ ` Φ[X\µ1
ind <~R> I(~x). P )(~S)]

~R /∈ fv(~S,Φ), X ∈ fv(Φ)
Φ elimination formula

Figure 11: Proof rules for our logic which differ from those of [9].
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W (e1, . . . , en) := w1 7→ e1 ? · · · ? wn 7→ en ? wn+1 7→ ? · · · ? wN 7→
(writing just W when n=0). For proof obligations we define tr(Γ ` P ) := Γ, ~w `
tr(P ).

We have proved the soundness of all the rules in Fig. 11: for each rule with
premise P and conclusion Q, we proved tr(Q) from tr(P ) in the logic of [9].
Two such proofs follow.

Theorem 5.3. Rule (Eval) in Fig. 11 holds.

Proof. The conclusion of the rule translates to

Γ, ~w ` {tr(P ) ? tr(e) 7→ tr(R(·)) ? W} tr(‘eval [e](e1, . . . , en)’) {tr(Q) ? W}

which expands to

Γ, ~w ` {tr(P ) ? tr(e) 7→ tr(R(·)) ? W} ‘C’ {tr(Q) ? W}

where C is [w1] := tr(e1) ; . . . ; [wn] := tr(en) ; eval [tr(e)]. Using the rules for
sequential composition and heap write, this will follow from

Γ, ~w `
{tr(P ) ? tr(e) 7→ tr(R(·)) ? W (tr(e1), . . . , tr(en))} eval [tr(e)] {tr(Q) ? W}

By the (Eval) rule of [9], this follows from Γ, ~w, k `

tr(R(k))⇒ {tr(P ) ? W (tr(e1), . . . , tr(en)) ? tr(e) 7→ tr(R(·))} k {tr(Q) ? W}

but this is the same as what one gets when translating the premise of our
prospective rule, so we are done.

Theorem 5.4. (⊗-TripleDist) in Fig. 11 holds.

Proof. Expanding the ◦ abbreviation and translating the axiom gives

Γ, ~w `
{tr(P ) ? W (tr(~e))} tr(e) {tr(Q) ? W} ⊗ tr(R)

⇔ {tr((P ⊗R) ? R) ? W (tr(~e))} tr(e) {tr((Q⊗R) ? R) ? W}
(1)

We rewrite the right hand side of this using, in successive steps, 1. the monoid
properties of ?, 2. the fact that for all A and all ~e, W (~e) ⊗ A ⇔ W (~e), and 3.
the distribution axiom (A ? B)⊗ C ⇔ (A⊗ C) ? (B ⊗ C):

{(tr(P )⊗ tr(R)) ? tr(R) ? W (tr(~e))} tr(e) {(tr(Q)⊗ tr(R)) ? tr(R) ? W}
⇔ {(tr(P )⊗ tr(R)) ? W (tr(~e)) ? tr(R)} tr(e) {(tr(Q)⊗ tr(R)) ? W ? tr(R)}
⇔ {(tr(P )⊗ tr(R)) ? (W (tr(~e))⊗ tr(R)) ? tr(R)}

tr(e)

{(tr(Q)⊗ tr(R)) ? (W ⊗ tr(R)) ? tr(R)}
⇔ {(tr(P ) ? W (tr(~e)))⊗ tr(R)) ? tr(R)} tr(e) {(tr(Q) ? W )⊗ tr(R)) ? tr(R)}
⇔ {(tr(P ) ? W (tr(~e))) ◦ tr(R)} tr(e) {(tr(Q) ? W ) ◦ tr(R)}
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Thus (1) is equivalent to

Γ, ~w `
{tr(P ) ? W (tr(~e))} tr(e) {tr(Q) ? W} ⊗ tr(R)

⇔ {(tr(P ) ? W (tr(~e))) ◦ tr(R)} tr(e) {(tr(Q) ? W ) ◦ tr(R)}

and this is an instance of the corresponding axiom for the language of [9], which
is

Γ ` {P} e {Q} ⊗R ⇔ {P ◦R} e {Q ◦R}

The above proofs consisted of a few reasoning steps to reduce the (translated)
rule for our language into the corresponding rule from [9]. This scheme works
for all the proof rules except (Lambda) – which of course has no equivalent in
[9] – whose proof is not difficult. In fact, only the proof rules that involve triples,
eval or λ need to be checked at all, because the translation is structural for all
other logical constructs. For example, the translation of the propositional law
P ⇒ (P ∨Q) is simply tr(P )⇒ (tr(P )∨ tr(Q)), which is a substitution instance
of the original law.

We must also show that the required extensions to the logic of [9], and their
associated proof rules, can be soundly constructed. We now describe how this
is done.

5.3. Soundness of extensions

Inductive predicates and finite sets. In order to specify lists and trees we use
sets of values that e.g. describe which values are stored in a tree or a list. Set
expressions are represented by Σ in the BNF grammar of Figure 5. In fact, those
sets will always be finite. They are not used by the programming language nor
stored on the heap and can therefore receive a natural finite set semantics. The
crucial subset proposition on sets can be interpreted canonically as follows where
σ and τ are sets (of integers3):

[[σ ⊆ τ ]]η
def
= { h ∈ Heap | [[σ]]η ⊆ [[τ ]]η }

Note that the meaning of this predicate does not depend on any current invariant
(world in the terminology of [9]) and is “pure” in the sense that it either is
Heap (the meaning of True) or ∅ (the meaning of False). For that reason,
the interpretation of subset assertions is canonically admissible and uniform as
required by the semantics in [9, 12] where one can also find the full definitions
of the semantics we are extending. In this section we intend to abstract away
from as many of the details as possible.

We need to show that the semantics of [9] can be extended by inductive
and recursive predicates (and combinations thereof). In the following UAdm

3This is sufficient for our purposes as pointers are integers. For more complex data types
the sets would have to be extended to be able to contain more general data.
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will denote the uniform and admissible subsets of Heap the domain of higher-
order stores. Moreover Pred denotes the non-expansive maps from a convenient
domain of (recursively defined) worlds W that represent the implicit invariants
that have been collected by invariant extension (for details see [12]) to UAdm.
Due to its extra properties, UAdm, and therefore also Pred , can be endowed
with a distance function such that Pred can be shown to be non-empty complete
ultrametric (1-bounded) spaces. This, in turn, means that contractive maps
Pred → Pred are guaranteed to have a fixpoint by Banach’s fixpoint theorem
(see [21]).

5.4. Existence of inductive assertions

The semantics of inductively defined predicates~I, parameterised by recursive
predicates ~R,

µkind

〈
~R
〉

I1( ~x1), . . . , In( ~xn). P1, . . . , Pn

needs to be established.
To that end, we first define arg

def
=
∑
i∈{1,...n} ValS

κi where ValS is the union
of Val and finite sets and κi is the arity of Ii, ie. the length of ~xi. Predicate
definitions depend on a predicate environment Ξ that is supposed to contain
definitions for the arguments ~R4, i.e. dom(Ξ) = ~R. Since we often use global
constants in definitions, predicate definitions also depend on an environment of
first-class values η. We can then define a functional Ψη,Ξ : Predarg → Predarg

in a pointwise fashion as follows:

Ψη,Ξ(F )(k,~v)
def
= [[Pk]]η[ ~xk 7→~v], Ξ[Ii 7→λ~yi. F (i,~yi)]

(2)

where |~v| is the arity κk of Ik(~xk) and |~yi| is the arity κi of Ii(~xi).
In the following, Ω denotes the minimal element of Predarg, ie. λ~x. [[False]]η.
Note that the interpretation map for assertions now also uses two arguments,

an environment for first-class variables (values and set types) η and an environ-

ment for the predicate variables ~R and ~I. The interpretation of assertions with
extra predicate variables is as in [9]. The only interesting case for interpreta-
tion of predicate variables is the following where X denotes either a recursive
predicate variable R or an inductive predicate variable I.

[[X(~e)]]η,Ξ
def
=

{
Ξ(X)([[~e]]η) if |~e| = arity(Ξ(X))

false otherwise
(3)

Since we assumed that Ξ contains definitions for all relevant predicate names
we do not have to consider the case X /∈ dom(Ξ). The definition also entails
that [[X(~e)]]η,Ξ ∈ Pred .

4We do not assume a global environment of predicates here as our syntax allows us to
define inductive predicates inside recursive ones (“on the fly”) and recursive and inductive
definitions can make use of other such predicates, respectively, via mutual recursion.
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Note also that the functional Ψη,Ξ is uniformly parametric in Ξ and thus the

predicate definitions Pi can only refer to predicates ~I that are defined w.r.t. the
same parameter instantiations for ~R. This is actually enforced by our syntax
where inductive calls to any Ii do not mention any predicate parameters ~R

explicitly and thus ~I(~e) has implicit predicate arguments which are ~R again.
In order to prove the induction rule sound we would like to use that Ψη,Ξ is

ω-continuous so let us show this first.

Lemma 5.5. The semantics of formula P ∈ B allowed in inductive definitions
(as defined in Thm. 4.1) is ω-continuous in its predicate environment, ie. [[P ]]η,Ξ
is continuous in Ξ.

Proof. We have to show that [[P ]]η,(tnΞn) = tn[[P ]]η,Ξn where t on predicates
of type Pred is pointwise union of the uniform admissible subsets of heaps lifted
to environments also in a pointwise manner. This follows easily by induction
on the shape of B using the syntactic restrictions of the grammar for B. As an
example, we show the base case:

[[I(~e)]]η,tnΞn
= tn[[I(~e)]]η,Ξn

We reason as follows:

[[I(~e)]]η,tnΞn
w = ((tnΞn)(I))([[~e]]η) w

= ∪n(Ξn(I))([[~e]]η) w

= ∪n[[I(~e)]]η,Ξn w

and because suprema are pointwise on Pred we are done.

Corollary 5.6. The functional Ψη,Ξ that interprets an inductive definition as
in (2) is continuous.

Next we show that inductively defined predicates exist and are well behaved.

Lemma 5.7. Each functional Ψη,Ξ that interprets an inductive definition as in
(2) has a fixpoint, denoted fix Ψη,Ξ, that lives in Predarg.

Proof. By Lemma 5.5, the functional Ψη,Ξ, used to interpret an inductive def-
inition, is ω-continuous and thus necessarily monotone. Accordingly, fix Ψη,Ξ

exists by Tarski’s fixpoint theorem. We can assume that all predicates Ξ(Ri) ∈
PredValSm where m is the arity of Ri, that F (I) ∈ PredValSκi for all I, and need to
show that fix Ψη,Ξ ∈ Predarg. We use the fact that by continuity the following
holds:

fix Ψη,Ξ =
⊔
n

Ψn
η,Ξ(Ω) (4)

From this follows immediately for any world w, k ∈ {1, . . . , n} and ~v ∈ ValSκk

that (fix Ψη,Ξ) (k,~v)w is uniform and non-expansive in its argument w. Due to
the union in the definition of the fixpoint admissibility is not immediate. We
need to show that any non-trivial ascending chain in

⋃
n Ψn

η,Ξ(Ω)(k,~v)w actually
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lies within Ψn0

η,Ξ(Ω)(k,~v)w for a particular n0. This holds for the functionals
Ψη,Ξ that interpret inductive definitions of the syntax as given in Thm. 4.1 due
to the restriction of B. It is important here that the predicates I must not
occur in ∀~x. {Φ1} e(~e ) {Φ2}. This ensures that application of Ψη,Ξ(X) lets the
predicate X grow only “horizontally” adding new heaps that are incomparable
to the ones in X, but not “vertically”, thus avoiding the creation of chains.

The fixpoint can now be used to interpret inductive predicates as they appear
in assertions:

[[(µkind

〈
~R
〉

I1( ~x1), . . . , In( ~xn). P1, . . . , Pn)(S1, . . .Sn)(~e)]]η,Ξ
def
={

(fix Ψη,[Ri 7→[[Si]]Ξ])(k, [[~e]]η) if [[~e]]η ∈ ValSκk

false otherwise
(5)

Next, we need the following lemma:

Lemma 5.8. The interpretation of any elimination formula Φ with free predi-
cate variable X is admissible in the following sense:

(∀n. ∀η. [[Φ]]η,[X7→An] = [[True]]η) ⇒ ∀η. [[Φ]]η,[X 7→tnAn] = [[True]]η (6)

where (An)n∈N is an ascending chain in PredValSκ for some arity κ.

Proof. This is easily shown using the fact that elimination formula Φ is of the
shape ∀~x.X(~e) ? Φ0 ⇒ Φ1. One uses the fact that if h ∈

⋃
nAn([[~e]]η)w · [[Φ0]]η w

then there must be a n0 such that h ∈ An0([[~e]]η)w · [[Φ0]]η w and thus by
assumption one gets the desired [[Φ1]]η w.

Theorem 5.9. (MuInd) and (Induction) in Fig. 11 hold.

Proof. Soundness of (MuInd) is a consequence of equations (2), (3), and (5)
above, making use of the fixpoint property. Soundness of (Induction) uses
equations (4) and (6) and is shown as follows.

Let Ψη,Ξ be the semantic functional the inductive definition gives rise to.
We know that Ψη,Ξ[X 7→Z] is ω-continuous in Z (Lemma 5.5), so by equation (4)
it suffices to show

[[Φ]]η,[X7→(
⊔
n Ψnη,Ξ)(Ω)] = [[True]]η

where Ξ is the environment for ~R parameters and defined predicates in use. We
know that Φ is admissible so by (6) it suffices to show

∀n. [[Φ]]η,[X7→Ψnη,Ξ(Ω)] = [[True]]η

This is shown by induction on n. The two premises of (Induction) corre-
spond to the induction base case and induction step, respectively. For n = 0 we
need to show [[Φ]]η,[X 7→λ~x. [[False]]η] = [[True]]η which follows from the appropriate

substitution lemma from [[Φ[X 7→ λ~x.False]]]η = [[True]]η which is the semantics
of the first assumption of the rule.
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For the induction step we need to show for any n ∈ N that

[[Φ]]η,[X 7→Ψnη,Ξ(Ω)] = [[True]]η ⇒ [[Φ]]η,[X7→Ψn+1
η,Ξ (Ω)] = [[True]]η (7)

But now we observe that

[[Φ]]η,[X7→Ψn+1
η,Ξ (Ω)] =

[[Φ]]η,[X7→Ψη,Ξ(Ψnη,Ξ(Ω))] = Definition of Ψη,Ξ

[[Φ]]η,[X7→[[P ]]η,Ξ[I 7→Ψn
η,Ξ

(Ω),Ri 7→[[Si]]η ]]
= Subst.Lem. and ~R /∈ fv(~S,Φ)

[[Φ]]η,[X7→[[P [I,~R\X,~S]]]η,[X7→Ψn
η,Ξ

(Ω)]]
=

[[Φ[X\P [I, ~R\X, ~S]]]]η,[X7→Ψnη,Ξ(Ω)]

Note that the domain of Ξ may contain I if I occurs in Φ. In this case I is only
temporarily overwritten in the environment for P in order to provide the correct
semantics of P . Due to the above equation, condition (7) is equivalent to

[[Φ]]η,[X7→Ψnη,Ξ(Ω)] = [[True]]η ⇒ [[Φ[X\P [I, ~R\X, ~S]]]]η,[X7→Ψnη,Ξ(Ω)] = [[True]]η

which follows from

[[Φ]]η = [[True]]η ⇒ [[Φ[X\P [I, ~R\X, ~S]]]]η = [[True]]η

which in turn follows from5

∀η. [[Φ ⇒ Φ[X\P [I, ~R\X, ~S]]]]η = [[True]]η

which is the semantics of the second hypothesis of the (Induction) rule, so we
are done.

5.5. Existence of recursive assertions (Soundness of Theorem 4.1)

We show the existence of the most general mutually recursively defined pred-
icate pattern (the “master pattern”) from Theorem 4.1.

We need to define [[(µk R1(~x1), . . . ,Rn(~xn) . P1, . . . , Pn)(~e)]]η but also the
meaning of recursive predicate expressions without arguments needs to be de-
fined, [[(µk R1(~x1), . . . ,Rn(~xn) . P1, . . . , Pn)]]η, as they can be used as arguments
themselves.

The interpretation does not depend on a predicate environment as any other
inductive predicate used can be defined “on the fly” and other recursive predi-
cates can be used by mutual recursion. We re-use the definition of type arg from
the previous subsection but now κi refers to the arity of the declared predicate
names Ri. We can then define a functional Ψη : Predarg → Predarg as follows:

Ψη(F )(k,~v)
def
= [[Pk]]η[ ~xk 7→~v], [Ri 7→λ~yi.F (i,~yi)]

(8)

5Note that in our model implication receives a non-standard interpretation which is uniform
in the worlds (see [9, 12]) but since it is stronger than the one used here this is fine.
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where |~v| = κk is the arity of Rk and |~yi| = κi is the arity of Ri.
We will now argue below that Ψη as defined above has a fixpoint fix Ψη in

which case one can define in analogy to the inductive case:

[[µk R1(~x1), . . . ,Rn(~xn). P1, . . . , Pn]]η
def
= fix Ψη (9)

[[(µk R1(~x1), . . . ,Rn(~xn). ~Pi)(~e)]]η
def
=

{
(fix Ψη)(k, [[~e]]η) if [[~e]]η∈ValS

κk

false otherwise

Proof of Theorem 4.1. We actually show that the functional Ψη : Predarg →
Predarg to interpret µ R1(~x1), . . . ,Rn(~xn). P1, . . . , Pn (defined in (8)) is con-
tractive and thus has a fixpoint by Banach’s fixpoint theorem [21]. From [9,
Thm. 12] we already know that it suffices to show that for all (i, v) ∈ arg we
have Ψ∗ : Predarg → Pred where Ψ∗(F ) = Ψη(F )(i, v) is a contractive function
in F . According to the allowable patterns A , as defined in Thm. 4.1, we can
show by induction on the structure of A that this is the case. Only two cases
actually depend on the recursive predicates. In the first one, {Φ} e(~e ) {Φ}, the
Ri can appear in formulae Φ but the semantics of triples as defined in [9, 12]

is carefully constructed such that [[{Φ} e(~e ) {Φ}]] is contractive in ~R. This has

been shown in [12, Lemma 31]. The second case of interest is I(~R)(~e) where
I ∈ I, so we have to consider assertions of the form

(µkind

〈
~S
〉

I1( ~x1), . . . , In( ~xn). P1, . . . , Pn)(~R)(~e)

where all Pi ∈ B. But B restricts occurrences of the parameters ~S to appear
within Φ’s inside {Φ} e(~e ) {Φ} which again establishes contractiveness in ~R (as

in the previous case) since actual parameters ~R are substituted for formal pa-

rameters ~S. We also need to show that all other logical connectives, like emp,
∗ and ∧ , are non-expansive in each argument, but this is straightforward

(see [9, 12]).

The intuition behind the contractiveness of our master pattern is that re-
cursive parameters R must appear inside nested triples. The interpretation of
those (not mentioned here but to be found in [9, 12]) is defined in a way that
enforces contractiveness. Heaps that satisfy the pre- or post-condition can be
viewed as “once unfolded according to their recursive definition” justifying the
increase in distance.

Again, any of the recursively defined predicates are admissible and uniform
since fixpoints of contractive maps between uniform admissible predicates are
automatically uniform and admissible (see [22])

Theorem 5.10. (Mu) in Fig. 11 holds.

Proof. Soundness of (Mu) is a consequence of the semantics above, see equa-
tions (8) and (9), making use of the fixpoint property.
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6. Specifying and proving our example program

In this section we show how to specify memory safety of our running example
program. Because proofs about programs which recurse through the store can
look a little odd to the untrained eye, we introduce them by first reasoning
about the tree disposal code DT . We will then go on to prove safety of the
main part of the program.

6.1. Proving correctness of the tree disposal code

We have already described, on page 14, the property we would like to prove
of our DT code; it is

∀t.
{
∃τ. tree(t, τ)
? DisposeTreeCode

}
‘λ tree. DT body’(t)

{
DisposeTreeCode

}
where DisposeTreeCode is shorthand for

µ1 R . disposeTree 7→ ∀t. {∃τ.tree(t, τ) ? R} · (t) {R}

and DT body is the body of the DT code. Note that DisposeTreeCode is equiv-
alent to

µ1 R . disposeTree 7→ ∀t. {∃τ.tree(t, τ)} · (t) {emp} ⊗ R

The proof makes prominent use of the (Eval) rule, for reasoning about calls
to stored code; the (Mu) rule, for folding and unfolding the recursively defined
predicate DisposeTreeCode, and the (Lambda) rule for dealing with parameter
passing.

We begin by applying the (Lambda) rule to deal with the parameter passing,
leaving us to prove{

∃τ.tree(tree, τ)
? DisposeTreeCode

}
DT body

{
DisposeTreeCode

}
We now unfold tree(tree, τ) (using (MuInd)) in the precondition which becomes
a disjunction of two cases, the leaf case and the fork case. The leaf case is
straightforward so we concentrate on the fork case, where need to prove:



∃τ, cPtr , left , right , opId , τ ′, τ ′′.
tree 7→ opLbl, cPtr , l , r , opId

? tree(left , τ ′)
? tree(right , τ ′′)
? DisposeTreeCode
∧ τ = {cPtr} ∪ τ ′ ∪ τ ′′


DT body

{
DisposeTreeCode

}

Dealing with the let and then the if statement, which must enter the else branch,
we are left with:
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

∃τ, cPtr , l , r , opId , τ ′, τ ′′.
tree 7→ opLbl, cPtr , l , r , opId

? tree(l , τ ′)
? tree(r , τ ′′)
? DisposeTreeCode
∧ τ = {cPtr} ∪ τ ′ ∪ τ ′′
∧ kind = opLbl



let left = [tree + leftO] in
let right = [tree + rightO]
in
free tree ;
free tree + CodePtrO ;
free tree + LeftO ;
free tree + RightO ;
free tree + OpIDO ;
eval [disposeTree](left) ;
eval [disposeTree](right)

{
DisposeTreeCode

}

This easily reduces to



∃τ, codePtr , τ ′, τ ′′.
tree(left , τ ′)

? tree(right , τ ′′)
? DisposeTreeCode
∧ τ = {codePtr} ∪ τ ′ ∪ τ ′′
∧ kind = opLbl


eval [disposeTree](left) ;
eval [disposeTree](right)

{
DisposeTreeCode

}

This leads us to the more interesting reasoning steps. By a combination of
(ForallExists), universal generalisation and the consequence rule, it will be
enough to prove:


tree(left , τ ′)

? tree(right , τ ′′)
? DisposeTreeCode

 eval [disposeTree](left) ;
eval [disposeTree](right)

{
DisposeTreeCode

}
We break this down by sequential composition into

tree(left , τ ′)
? tree(right , τ ′′)
? DisposeTreeCode

 eval [disposeTree](left)

{
tree(right , τ ′′)

? DisposeTreeCode

}
(10)

and{
tree(right , τ ′′)

? DisposeTreeCode

}
eval [disposeTree](right)

{
DisposeTreeCode

}
(11)

Using the frame rule (?-Frame), taking tree(right , τ ′′) as the framed invariant,
we can reduce (10) to a case which is symmetric to (11). Thus we will only prove
(11). We begin by using the (Mu) rule to unfold the use of DisposeTreeCode in
the precondition, leaving us with



tree(right , τ ′′)
? disposeTree 7→ ∀t.{

∃τ.tree(t, τ)
? DisposeTreeCode

}
·(t){

DisposeTreeCode
}


eval [disposeTree](right)

{
DisposeTreeCode

}
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Then, using the (Eval) rule, we will be finished if we can show

∀t.
{
∃τ.tree(t, τ)
? DisposeTreeCode

}
k(t)

{
DisposeTreeCode

}
⇒ 

tree(right , τ ′′)
? disposeTree 7→ ∀t.{

∃τ.tree(t, τ)
? DisposeTreeCode

}
·(t){

DisposeTreeCode
}


k(right)

{
DisposeTreeCode

}

To prove this we argue as follows.

∀t.
{
∃τ.tree(t, τ)
? DisposeTreeCode

}
k(t)

{
DisposeTreeCode

}
⇒ {instantiate t with right}{

∃τ.tree(right , τ)
? DisposeTreeCode

}
k(right)

{
DisposeTreeCode

}
⇒ {use (Mu) to unfold DisposeTreeCode in the precondition}

∃τ.tree(right , τ)
? disposeTree 7→ ∀t.{

∃τ.tree(t, τ)
? DisposeTreeCode

}
·(t){

DisposeTreeCode
}


k(right)

{
DisposeTreeCode

}

⇒ {consequence rule}

tree(right , τ ′′)
? disposeTree 7→ ∀t.{
∃τ.tree(t, τ)
? DisposeTreeCode

}
·(t){

DisposeTreeCode
}


k(right)

{
DisposeTreeCode

}

With this relatively simple proof under our belt, let us tackle the specification
and proof of the main part of our program.

6.2. Proof of safety of the main program

Our program uses three heap data structures (Fig. 1) — an expression tree,
an association list (mapping variables to values) and a list of code — as well as
various procedures stored on the heap. Fig. 12 defines the predicates we use to
describe these; all uses of µ fit the master pattern. Fig. 12 first defines AssocList
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AssocList := ∃σ, a . assoclist 7→ a ? lseg(a, null, σ)

(CLseg ,EvalCode,LoaderCode,SearchModsCode) := µ CLseg(x, y, σ),EC,LC, SMC .

lseg[~R,Mod(·)][CLseg,EC,LC,SMC](x, y, σ),

evalTree 7→ ∀t, r, τ1, σ1 .

∃a. τ1 ⊆ σ1 ∧
modlist 7→ a

? CLseg(a, null, σ1)
? tree(t, τ1)
? EC
? LC
? SMC
? r 7→


·(t, r)



∃a, σ2, τ2. τ2 ⊆ σ2 ∧ σ1 ⊆ σ2 ∧
modlist 7→ a

? CLseg(a, null, σ2)
? tree(t, τ2)
? EC
? LC
? SMC
? r 7→


,

loader 7→ ∀opID , codePtraddr , σ1 .
∃a .

modlist 7→ a
? CLseg(a, null, σ1)
? codePtraddr 7→

 ·(opID , codePtraddr)


∃a, r, σ2. σ1 ∪ {r} ⊆ σ2

∧ modlist 7→ a
? CLseg(a, null, σ2)
? codePtraddr 7→ r

 ,

searchMods 7→ ∀opID , codePtraddr , a, σ .
modlist 7→ a

? CLseg(a, null, σ)
? codePtraddr 7→

 · (opID , codePtraddr)


∃r. (r ∈ σ ∨ r = null)
∧ modlist 7→ a
? CLseg(a, null, σ)
? codePtraddr 7→ r


where ~R is CLseg(·, ·, ·),EC,LC, SMC and Mod(·) is

∀t, r, τ1, σ1 .

∃a. τ1 ⊆ σ1 ∧
modlist 7→ a

? CLseg(a, null, σ1)
? treefork(t, τ1)
? EC
? LC
? SMC
? r 7→


·(t, r)



∃a, σ2, τ2. τ2 ⊆ σ2 ∧ σ1 ⊆ σ2 ∧
modlist 7→ a

? CLseg(a, null, σ2)
? tree(t, τ2)
? EC
? LC
? SMC
? r 7→


Mod ′(F ) :=

Mod(F )[CLseg,EC,LC, SMC\CLseg ,EvalCode,LoaderCode,SearchModsCode]

Figure 12: Definitions of predicates used in the specification of our example program.
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to describe the association list. Then we define, in one mutually recursive
definition, four predicates CLseg , EvalCode, LoaderCode and SearchModsCode
for describing the code list and the procedures stored on the heap.

Predicate CLseg(x, z, σ) denotes a segment of the code list, running from
address x to z, where σ is the set of addresses of the list nodes (and thus,
of the modules) in the list. Predicate EvalCode denotes a procedure stored
at address evalTree on the heap and satisfying a specification expressing the
required behaviour of a safe tree evaluation routine. Similarly LoaderCode and
SearchModsCode describe appropriately behaved dynamic loading and module
list search procedures stored on the heap at addresses loader and searchMods
respectively.

The abbreviation Mod(F ) used in the recursive definition says that code F
behaves appropriately to be used as a module in our system. Mod(F ) is almost
the same as the specification used for evalTree (which we shall call EvalTriple);
the difference is that modules may assume the tree is a fork, because evalTree
has already checked for and handled the leaf case. Mod ′ is the same as Mod but
with the recursion variables CLseg, EC, LC, SMC replaced by the (top-level)
predicates CLseg , EvalCode, LoaderCode, SearchModsCode. Thus we can use
Mod ′ at the top level of our proofs.

The code list segment predicate CLseg satisfies standard properties of list
segment predicates, such as the implication

CLseg(x, z, σ) ∧ a ∈ σ ⇒ ∃y, σ1, σ2.


CLseg(x, a, σ1)

? a 7→ Mod ′(·), , y
? CLseg(y, z, σ2)
∧ σ = σ1 ∪ {a} ∪ σ2

 (12)

which allows one to split the list node at address a out from the middle of the
list. Such properties are proved using (induction) and we will use them in our
proofs.

We will prove the main program (Fig. 2) satisfies the following specification:
modlist 7→ a ? CLseg(a, null, σ)

? tree(tree, τ) ∧ τ ⊆ σ
? LoaderCode ? SearchModsCode
? evalTree 7→

 MainProg
{

True
}

(13)

A more specific post-condition could be used to prove the absence of memory
leaks etc., but True is sufficient for memory safety. Note that we assume specifi-
cations for the procedures stored at loader and searchMods (for which the code
is not given). On the other hand we prove (as a sub-proof) that the code which
the main program writes to evalTree satisfies the specification in the EvalCode
predicate.

The reader may wonder why the triple (13) makes no mention of the associ-
ation list. Shouldn’t this appear in the precondition, since the modules invoked
by the program may access it? In fact, we have not mentioned AssocList any-
where in the recursive definition in Fig. 12. Our idea is to prove safety of the
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main program as if the association list was not used, and afterwards use the
deep frame rule to add it everywhere it is needed. This keeps the proof simpler,
and is possible because the main program doesn’t manipulate the association
list directly, only via the loadable modules. Specifically, we use (?-Frame) to
add AssocList as an invariant to (13); using the distribution laws for ⊗, this
gives us



modlist 7→ a
? CLseg(a, null, σ)⊗AssocList
? tree(tree, τ) ∧ τ ⊆ σ
? LoaderCode ⊗AssocList
? SearchModsCode ⊗AssocList
? evalTree 7→
? AssocList


MainProg

{
True

? AssocList

}

Using the consequence rule we can now weaken the postcondition to True for
simplicity.

The full proof of (13) is rather large, so here we only sketch the part of the
proof, namely the following triple:

∀t, r, σ1, τ1 .



∃a .
modlist 7→ a

? CLseg(a, null, σ1)
? tree(t, τ1)
? EvalCode
? LoaderCode
? SearchModsCode
? r 7→
∧ τ1 ⊆ σ1



‘λ tree, resaddr .
let kind = [tree] in
if kind = leafLabel then
[resaddr ] := [tree + ValO]

else
let codeaddr =

[tree + CodePtrO]
in
eval [codeaddr ]

(tree, resaddr)
’ (t, r)



∃a, σ2, τ2 .
modlist 7→ a

? CLseg(a, null, σ2)
? tree(t, τ2)
? EvalCode
? LoaderCode
? SearchModsCode
? r 7→
∧ τ2 ⊆ σ2

∧ σ1 ⊆ σ2


which is the proof obligation resulting from writing the code above into evalTree
stating that it has the required behaviour. The proof proceeds by using the
(Lambda) rule and then unfolding the tree predicate (with (MuInd)), which
results in a disjunction of two cases, namely when the tree is a fork and when
it is a leaf. The leaf case is easy so we omit it, concentrating on the fork case
where recursion through the store happens. Standard reasoning for the “let”
and “if-then-else” constructs, as well as list reasoning for the CLseg predicate
(using (12) to expose the cell containing the code we will call) reduces the proof
obligation to the following:
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

∃a, l , r , τl, τr,
nxt , σpref, σsuff .

modlist 7→ a
? CLseg(a, codeaddr , σpref)
? codeaddr 7→ Mod(·), ,nxt
? CLseg(nxt , null, σsuff)
? tree 7→ opLbl, codeaddr , l , r ,
? tree(l , τl)
? tree(r , τr)
? EvalCode
? LoaderCode
? SearchModsCode
? resaddr 7→
∧ τ1 ⊆ σ1

∧ τ1 = {codeaddr} ∪ τl ∪ τr
∧ σ1 = σpref ∪ {codeaddr} ∪ σsuff



‘eval [codeaddr ]
(tree, resaddr)’



∃a, σ2, τ2 .
modlist 7→ a

? CLseg(a, null, σ2)
? tree(tree, τ2)
? EvalCode
? LoaderCode
? SearchModsCode
? resaddr 7→
∧ τ2 ⊆ σ2

∧ σ1 ⊆ σ2



(14)

Now we can finally apply the (Eval) rule; the implication we need to prove is

Mod ′(k)⇒ Ψ

where Ψ is the target triple (14) with the body replaced by k(tree, resaddr). The
implication can be shown using the consequence rule, folding for the treefork and
CLseg definitions, and the definition of Mod ′.

6.3. Proving safety of the loadable modules

To prove memory safety of the modules we must show for each module
implementation M that Mod ′(M)⊗AssocList . For modules that do not directly
access the association list (e.g. PLUS), we first prove Mod ′(M) and then use the
deep frame rule ⊗–Frame to add AssocList . Appendix A contains the proof
for the PLUS module. In that proof one sees the purpose of the constraint
σ1 ⊆ σ2 in the postconditions of Mod and EvalTriple, which says that modules
can update code in place, and add new code, but may not delete nodes from the
code list. If modules were deleted while PLUS was evaluating the left subtree,
pointers to that code might still remain in the right subtree, leading to a crash.

For modules that do access the association list, e.g. VAR and ASSIGN, this
cannot be done; one must prove Mod(M)⊗AssocList directly. The distribution
axioms for ⊗ play a key role in doing this. For purposes of illustration, consider
a module INCR ALL whose job is to (ignore its arguments and) increment the
value of every variable in the association list. This module is implemented by a
command C satisfying

∀t, r. {AssocList}C(t, r) {AssocList} (15)

because the association list is the only thing INCR ALL needs to access. We
now sketch how to derive the required Mod ′(C)⊗ AssocList from (15). By the
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distribution laws for ⊗, (15) is equivalent to

(∀t, r. {emp}C(t, r) {emp})⊗AssocList

Now we have moved the association list AssocList outside the triple as a framed
invariant. By monotonicity of ⊗ we will have the required Mod ′(C)⊗AssocList
if we can show

∀t, r. {emp}C(t, r) {emp} ⇒ Mod ′(C)

This is mostly a matter of using (?-Frame) to add as invariants all the pieces
of state that a module might access, such as EvalCode and r 7→ . One neat
feature of this proof is that one never needs to push an application of ⊗ through
a µ operator; this is good because there is no simple distribution law relating
⊗ and µ.

Recall that in Fig. 3 we presented modules which make use of higher-order
store in various ways: our modules exhibit dynamic discovery of available code,
on-demand loading of required code, self-update and specialisation at runtime.
We stress that these modules and behaviours can all be verified using our logic.

Remark 6.1. Code updates do not need to preserve behaviour.
We point out a key difference between our nested triples and store speci-

fications as used in [23] to specify object methods stored on the heap. Using
fixed store specifications that are expressed in the context like types are, if one
overwrites some code (method) C with new code (method) D, D must meet
the behavioural specification given in the store specification which is the one C
fulfilled. As a consequence of store specifications, code updates must preserve
behaviour. With nested triples this is not the case: we can overwrite code with
other code having totally unrelated behaviour.

For example, in our main program (Fig. 2) we can change the line

let disposeTree = new 0 in . . .

to6

let disposeTree = evalTree in . . . (16)

This causes the tree deletion code to reside, and recurse through the store, in
the cell formerly occupied by the tree evaluation code; the new code does not
satisfy the old specification EvalTriple(·). The proof that the tree disposal runs
safely is essentially unchanged.

Note that the store specification used in [23] is one big invariant for the
program under consideration (which is implicitly recursively defined). Using
nested triples, however, one has to specify invariants explicitly and this leads to
explicit recursive definitions of predicates in specifications.

6Technically the statement form let v = E in C used in (16) above is not in the programming
language, but can be treated as shorthand for (choosing x fresh)

let x = new E in let v = [x] in (free x ; C)
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Remark 6.2. We have considered the following variation of the (Eval) rule:

EvalPrime
Γ ` P ⇒ e 7→ {P} · (~e) {Q} ? True

Γ ` {P} eval [e](~e) {Q}

This rule would often be more convenient than the existing (Eval) rule. For
example, in the proof of the DT code in Section 6.1, two uses of (Mu) were
necessary, but with (EvalPrime) only one would be needed. Unfortunately,
although (EvalPrime) appears very plausible, it is not validated by the ultra-
metric semantics model of [9]. The reason is that the validity of triples depends
on the rank7 of the heap, but using ?True in the hypothesis means we cannot
guarantee that {P} · (~e) {Q} holds in a heap of sufficiently high rank. The rule
holds in a step-indexed version of the ultrametric model as advocated in [24].

7. Conclusions and future work

We extended the separation logic of [9] for higher-order store, adding several
features needed to reason about larger, more realistic programs, including pa-
rameter passing and more general recursive specification patterns. We classified
and discussed several such specification patterns, corresponding to increasingly
complex uses of recursion through the store. Finally we applied our specification
patterns and rules to an example program that exploited many of the possibil-
ities offered by higher-order store; thus we presented the first larger case study
conducted with logical techniques based on [9].

7.1. Related work

The logic of [9] on which we build is by no means the only logic which allows
reasoning about higher-order store or recursion through the store; there are sev-
eral others (for instance [7, 25, 16, 26, 27, 28, 29, 30]), each with a corresponding
underlying semantic model. None of these papers treat the complex patterns of
recursion through the store we have considered, however.

It is interesting to ask whether the specification patterns we have identified
here, or adaptations thereof, could also be used with these other logics, or
whether they are somehow tied to the logic of [9]. To partially answer this, we
note that the main property of the model in [9] on which our development rests
is the existence of various fixpoints (see the proof of Theorem 4.1). Thus it
seems possible that our specification patterns can be adapted to another logic
for higher order store, provided the underlying model of that logic guarantees
the existence of the appropriate fixpoints.

For example, let us consider Hoare Type Theory [31], which is the foundation
of the Ynot verification system [30]. Hoare Type Theory is a dependent type

7The rank of a heap h is the smallest k such that πk(h) = h for a family of projections πn
that satisfy

⊔
n πn = idHeap [9]. The rank of a heap is used to ensure that the semantics of

(nested) triples are non-expansive in the worlds.
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system for higher order imperative programs, in which Hoare triples are available
as types. These Hoare types function much like nested Hoare triples. In [32] it is
remarked that “future work includes investigating how to model recursive types,
as needed for the specification of programs that recurse through the store”. The
authors state that “recursive types should exist, though, since admissible pers
do accommodate a wide range of recursive types”. Thus it is quite plausible
that our specification patterns could be carried over mutatis mutandis to Hoare
Type Theory.

For some of the logics mentioned above, such as [7, 26], the underlying model
does not ensure the existence of the required fixpoints. Of course, this does not
mean that such logics are necessarily incapable of reasoning about the intricate
uses of recursion through the store we have examined; it simply shows that the
approach we have used here cannot be carried over straightforwardly.

7.1.1. Tool support

The complexity of the involved specifications and proofs demands tool sup-
port. We have developed a verification tool named Crowfoot [10] supporting a
logic and a language very similar to that used in this paper. Crowfoot uses sym-
bolic execution, as used in tools such as Smallfoot [33], jStar [34] and VeriFast
[35]. Use of ?-frame by Crowfoot is automatic, whereas the use of ⊗-frame
is presently guided by user annotations.

We have used Crowfoot, for example, to verify correctness of runtime module
updates [18], to verify the Reflective Visitor design pattern [36], and to verify
a large subset of the example presented in this paper. The online version of
Crowfoot (available on our website [37]) provides the code and specifications
(plus proof hints) for the main program and modules Plus, While, Oscillate,
and Load Overwrite.

Since Crowfoot is a proof-of-concept tool for higher-order store it does not
(yet) support the division operator and thus the modules involving complex
arithmetic (Coprime and Binom) could not be ported to Crowfoot. Moreover,
Crowfoot cannot express triples for code stored in program variables, only for
code stored on the heap. Therefore, the implementation of the Oscillate
module has been slightly altered in the Crowfoot version.

7.2. Future work

The results of this paper raise some interesting new challenges. For instance,
we were able to perform specialisation at runtime of the

(
n
k

)
operator just by ex-

ploiting the static scoping of the programming language, but for other cases this
will be insufficient. We plan to extend our language and logic with (extensional)
operations for generating code at runtime.

In proving our example program, we used the (⊗-frame) rule. However,
(⊗-frame) gives only a limited form of information hiding: for instance it
does not allow us to prove a module which sets up some persistent state on its
first execution, and then uses it on subsequent invocations. The recent paper
[38] extends the logic of [9] by adding an anti-frame rule, which provides more
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flexible information hiding. It has not been considered in our example here.
Because most of our proof rules are justified by reducing them via syntactic
means to those of [9], it is very likely that the extensions we introduced are
compatible with the anti-frame rule, but this is yet to be proved formally.

Acknowledgements. This research was supported by the EPSRC grant From
Reasoning Principles for Function Pointers To Logics for Self-Configuring Pro-
grams (EP/G003173/1).

Appendix A. Proof for the PLUS module

In this appendix we give the proof for the soundness of the PLUS module.
Due to lack of horizontal space we often present triples in the form:

{
long pre-condition

}
C
{

long post-condition
}

C =

program statement1;

program statement2;

program statement3

instead of the usual triple layout

{
long pre-condition

} program statement1;
program statement2;
program statement3

{
long post-condition

}
.

As we remarked, we can prove Mod ′(M) (where M is the code of PLUS) and
then use ⊗-frame to get Mod ′(M)⊗AssocList . So we need to prove:

∀t, r, τ1, σ1 .

∃a. τ1 ⊆ σ1 ∧
modlist 7→ a

? CLseg(a, null, σ1)
? treefork(t, τ1)
? EvalCode
? LoaderCode
? SearchModsCode
? r 7→


C



∃a, σ2, τ2. τ2 ⊆ σ2 ∧ σ1 ⊆ σ2 ∧
modlist 7→ a

? CLseg(a, null, σ2)
? tree(t, τ2)
? EvalCode
? LoaderCode
? SearchModsCode
? r 7→


C = ‘

λtree, resaddr .

let left = [tree + LeftO] in

let right = [tree + RightO] in

eval [evalTree](left , res leftVal) ;

eval [evalTree](right , res rightVal) ;

[resaddr ] := leftVal + rightVal

’ (t, r)
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By universal generalisation and the Lambda rule, it will suffice to prove:



∃a .
modlist 7→ a

? CLseg(a, null, σ1)
? treefork(tree, τ1)
? EvalCode
? LoaderCode
? SearchModsCode
? resaddr 7→
∧ τ1 ⊆ σ1


C



∃a, σ2, τ2 .
modlist 7→ a

? CLseg(a, null, σ2)
? tree(tree, τ2)
? EvalCode
? LoaderCode
? SearchModsCode
? resaddr 7→
∧ τ2 ⊆ σ2

∧ σ1 ⊆ σ2


C =

let left = [tree + LeftO] in

let right = [tree + RightO] in

eval [evalTree](left , res leftVal) ;

eval [evalTree](right , res rightVal) ;

[resaddr ] := leftVal + rightVal

From now on for ease of presentation we will use the following abbreviation:

Stuff := EvalCode ? LoaderCode ? SearchModsCode ? resaddr 7→

Stuff will be an invariant in many of our triples. Expanding the abbreviation
treefork, it suffices to prove:



∃a, cPtr , left , right , τle, τri .
modlist 7→ a

? CLseg(a, null, σ1)
? tree 7→ opLbl, cPtr , left , right ,
? tree(left , τle)
? tree(right , τri)
? Stuff
∧ τ1 ⊆ σ1

∧ τ1 = {cPtr} ∪ τle ∪ τri


C



∃a, σ2, τ2 .
modlist 7→ a

? CLseg(a, null, σ2)
? tree(tree, τ2)
? Stuff
∧ τ2 ⊆ σ2

∧ σ1 ⊆ σ2



C =

let left = [tree + LeftO] in

let right = [tree + RightO] in

eval [evalTree](left , res leftVal);

eval [evalTree](right , res rightVal);

[resaddr ] := leftVal + rightVal

Standard reasoning reduces this to the following:
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

∃a, cPtr , τle, τri .
modlist 7→ a

? CLseg(a, null, σ1)
? tree 7→ opLbl, cPtr , left , right ,
? tree(left , τle)
? tree(right , τri)
? Stuff
∧ τ1 ⊆ σ1

∧ τ1 = {cPtr} ∪ τle ∪ τri


C



∃a, σ2, τ2 .
modlist 7→ a

? CLseg(a, null, σ2)
? tree(tree, τ2)
? Stuff
∧ τ2 ⊆ σ2

∧ σ1 ⊆ σ2



C =

eval [evalTree](left , res leftVal);

eval [evalTree](right , res rightVal);

[resaddr ] := leftVal + rightVal

The existential quantifiers over left and right have disappeared. Now we expand
the res abbreviation, leaving:



∃a, cPtr , τle, τri .
modlist 7→ a

? CLseg(a, null, σ1)
? tree 7→ opLbl, cPtr , left , right ,
? tree(left , τle)
? tree(right , τri)
? Stuff
∧ τ1 ⊆ σ1

∧ τ1 = {cPtr} ∪ τle ∪ τri


C



∃a, σ2, τ2 .
modlist 7→ a

? CLseg(a, null, σ2)
? tree(tree, τ2)
? Stuff
∧ τ2 ⊆ σ2

∧ σ1 ⊆ σ2



C =

let leftValaddr = new 0 in

eval [evalTree](left , leftValaddr);

let leftVal = [leftValaddr ] in

let rightValaddr = new 0 in

eval [evalTree](right , rightValaddr);

let rightVal = [rightValaddr ] in

[resaddr ] := leftVal + rightVal ;

free leftValaddr ;

free rightValaddr

Standard reasoning deals with the let leaving:
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

∃a, cPtr , τle, τri .
modlist 7→ a

? CLseg(a, null, σ1)
? tree 7→ opLbl, cPtr , left , right ,
? tree(left , τle)
? tree(right , τri)
? Stuff
? leftValaddr 7→
∧ τ1 ⊆ σ1

∧ τ1 = {cPtr} ∪ τle ∪ τri



C



∃a, σ2, τ2 .
modlist 7→ a

? CLseg(a, null, σ2)
? tree(tree, τ2)
? Stuff
∧ τ2 ⊆ σ2

∧ σ1 ⊆ σ2



C =

eval [evalTree](left , leftValaddr);

let leftVal = [leftValaddr ] in

let rightValaddr = new 0 in

eval [evalTree](right , rightValaddr);

let rightVal = [rightValaddr ] in

[resaddr ] := leftVal + rightVal ;

free leftValaddr ; free rightValaddr

Let us now assume that we have the following triple; we will come back and
prove it later.



∃a, cPtr , τle, τri .
modlist 7→ a

? CLseg(a, null, σ1)
? tree 7→ opLbl, cPtr , left , right ,
? tree(left , τle)
? tree(right , τri)
? Stuff
? leftValaddr 7→
∧ τ1 ⊆ σ1

∧ τ1 = {cPtr} ∪ τle ∪ τri



Cle



∃a, σ2, τ2, cPtr , τle, τri .
modlist 7→ a

? CLseg(a, null, σ2)
? tree 7→ opLbl, cPtr , left , right ,
? tree(left , τle)
? tree(right , τri)
? Stuff
? leftValaddr 7→
∧ σ1 ⊆ σ2

∧ τ2 ⊆ σ2

∧ τ2 = {cPtr} ∪ τle ∪ τri


(A.1)

Cle = eval [evalTree](left , leftValaddr)

Using (A.1) and sequential composition, our proof obligation reduces to
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

∃a, σ2, τ2, cPtr , τle, τri .
modlist 7→ a

? CLseg(a, null, σ2)
? tree 7→ opLbl, cPtr , left , right ,
? tree(left , τle)
? tree(right , τri)
? Stuff
? leftValaddr 7→
∧ σ1 ⊆ σ2

∧ τ2 ⊆ σ2

∧ τ2 = {cPtr} ∪ τle ∪ τri



C



∃a, σ2, τ2 .
modlist 7→ a

? CLseg(a, null, σ2)
? tree(tree, τ2)
? Stuff
∧ τ2 ⊆ σ2

∧ σ1 ⊆ σ2



C =

let leftVal = [leftValaddr ] in

let rightValaddr = new 0 in

eval [evalTree]

(right , rightValaddr);

let rightVal = [rightValaddr ] in

[resaddr ] := leftVal + rightVal ;

free leftValaddr ;

free rightValaddr

Standard reasoning reduces this further; it remains to show

∃a, σ2, τ2, cPtr , τle, τri .
modlist 7→ a

? CLseg(a, null, σ2)
? tree 7→ opLbl, cPtr , left , right ,
? tree(left , τle)
? tree(right , τri)
? Stuff
? leftValaddr 7→
? rightValaddr 7→
∧ σ1 ⊆ σ2

∧ τ2 ⊆ σ2

∧ τ2 = {cPtr} ∪ τle ∪ τri



C



∃a, σ2, τ2 .
modlist 7→ a

? CLseg(a, null, σ2)
? tree(tree, τ2)
? Stuff
∧ τ2 ⊆ σ2

∧ σ1 ⊆ σ2



C =

eval [evalTree]

(right , rightValaddr);

let rightVal = [rightValaddr ] in

[resaddr ] := leftVal + rightVal ;

free leftValaddr ;

free rightValaddr
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Again we will assume a triple for the eval, deferring its proof until later. We
assume:



∃a, σ2, τ2, cPtr , τle, τri .
modlist 7→ a

? CLseg(a, null, σ2)
? tree 7→ opLbl, cPtr , left , right ,
? tree(left , τle)
? tree(right , τri)
? Stuff
? leftValaddr 7→
? rightValaddr 7→
∧ σ1 ⊆ σ2

∧ τ2 ⊆ σ2

∧ τ2 = {cPtr} ∪ τle ∪ τri



Cri



∃a, σ2, τ2, cPtr , τle, τri .
modlist 7→ a

? CLseg(a, null, σ2)
? tree 7→ opLbl, cPtr , left , right ,
? tree(left , τle)
? tree(right , τri)
? Stuff
? leftValaddr 7→
? rightValaddr 7→
∧ σ1 ⊆ σ2

∧ τ2 ⊆ σ2

∧ τ2 = {cPtr} ∪ τle ∪ τri


(A.2)

Cri = eval [evalTree](right , rightValaddr)

Then by sequential composition it remains to prove:



∃a, σ2, τ2, cPtr , τle, τri .
modlist 7→ a

? CLseg(a, null, σ2)
? tree 7→ opLbl, cPtr , left , right ,
? tree(left , τle)
? tree(right , τri)
? Stuff
? leftValaddr 7→
? rightValaddr 7→
∧ σ1 ⊆ σ2

∧ τ2 ⊆ σ2

∧ τ2 = {cPtr} ∪ τle ∪ τri



C



∃a, σ2, τ2 .
modlist 7→ a

? CLseg(a, null, σ2)
? tree(tree, τ2)
? Stuff
∧ τ2 ⊆ σ2

∧ σ1 ⊆ σ2



C =

let rightVal = [rightValaddr ] in

[resaddr ] := leftVal + rightVal ;

free leftValaddr ;

free rightValaddr

By standard reasoning this would follow from
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

∃a, σ2, τ2, cPtr , τle, τri .
modlist 7→ a

? CLseg(a, null, σ2)
? tree 7→ opLbl, cPtr , left , right ,
? tree(left , τle)
? tree(right , τri)
? Stuff
∧ σ1 ⊆ σ2

∧ τ2 ⊆ σ2

∧ τ2 = {cPtr} ∪ τle ∪ τri



skip



∃a, σ2, τ2 .
modlist 7→ a

? CLseg(a, null, σ2)
? tree(tree, τ2)
? Stuff
∧ τ2 ⊆ σ2

∧ σ1 ⊆ σ2


We now use the consequence rule to weaken the precondition, introducing

existential quantifiers over left and right again; it is enough to prove



∃a, σ2, τ2, cPtr , left , right , τle, τri .
modlist 7→ a

? CLseg(a, null, σ2)
? tree 7→ opLbl, cPtr , left , right ,
? tree(left , τle)
? tree(right , τri)
? Stuff
∧ σ1 ⊆ σ2

∧ τ2 ⊆ σ2

∧ τ2 = {cPtr} ∪ τle ∪ τri



skip



∃a, σ2, τ2 .
modlist 7→ a

? CLseg(a, null, σ2)
? tree(tree, τ2)
? Stuff
∧ τ2 ⊆ σ2

∧ σ1 ⊆ σ2



Restoring the abbreviation treefork, we are left with

∃a, σ2, τ2 .
modlist 7→ a

? CLseg(a, null, σ2)
? treefork(tree, τ2)
? Stuff
∧ σ1 ⊆ σ2

∧ τ2 ⊆ σ2


skip



∃a, σ2, τ2 .
modlist 7→ a

? CLseg(a, null, σ2)
? tree(tree, τ2)
? Stuff
∧ τ2 ⊆ σ2

∧ σ1 ⊆ σ2


This holds because from the definition of tree we have treefork(t, τ) ⇒

tree(t, τ).
Let us now prove (A.1). Formally, we first use the (Mu) rule in the pre-

condition to unfold the EvalCode predicate (which was hidden in the Stuff
abbreviation), leaving
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

∃a, cPtr , τle, τri .
modlist 7→ a

? CLseg(a, null, σ1)
? tree 7→ opLbl, cPtr , left , right ,
? tree(left , τle)
? tree(right , τri)
? evalTree 7→ EvalTriple(·)
? LoaderCode
? SearchModsCode
? resaddr 7→
? leftValaddr 7→
∧ τ1 ⊆ σ1

∧ τ1 = {cPtr} ∪ τle ∪ τri



C



∃a, σ2, τ2, cPtr , τle, τri .
modlist 7→ a

? CLseg(a, null, σ2)
? tree 7→ opLbl, cPtr , left , right ,
? tree(left , τle)
? tree(right , τri)
? Stuff
? leftValaddr 7→
∧ σ1 ⊆ σ2

∧ τ2 ⊆ σ2

∧ τ2 = {cPtr} ∪ τle ∪ τri


C = eval [evalTree](left , leftValaddr)

We can apply the (Eval) rule; we’ll be done if we can show the following
implication:

EvalTriple(k)⇒ (A.3)

∃a, cPtr , τle, τri .
modlist 7→ a

? CLseg(a, null, σ1)
? tree 7→ opLbl, cPtr , left , right ,
? tree(left , τle)
? tree(right , τri)
? evalTree 7→ EvalTriple(·)
? LoaderCode
? SearchModsCode
? resaddr 7→
? leftValaddr 7→
∧ τ1 ⊆ σ1

∧ τ1 = {cPtr} ∪ τle ∪ τri



C



∃a, σ2, τ2, cPtr , τle, τri .
modlist 7→ a

? CLseg(a, null, σ2)
? tree 7→ opLbl, cPtr , left , right ,
? tree(left , τle)
? tree(right , τri)
? EvalCode
? LoaderCode
? SearchModsCode
? resaddr 7→
? leftValaddr 7→
∧ σ1 ⊆ σ2

∧ τ2 ⊆ σ2

∧ τ2 = {cPtr} ∪ τle ∪ τri


C = k(left , leftValaddr)

So we’ll start with the LHS and derive the RHS. The LHS is:

∀t, r, τ1, σ1 .

∃a. τ1 ⊆ σ1 ∧
modlist 7→ a

? CLseg(a, null, σ1)
? tree(t, τ1)
? EvalCode
? LoaderCode
? SearchModsCode
? r 7→


k(t, r)



∃a, σ2, τ2. τ2 ⊆ σ2 ∧ σ1 ⊆ σ2 ∧
modlist 7→ a

? CLseg(a, null, σ2)
? tree(t, τ2)
? EvalCode
? LoaderCode
? SearchModsCode
? r 7→


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Instantiating the quantified variables t, r, σ1 respectively with left , leftValaddr ,
σ1, and renaming τ1 to τleft, gives

∀τleft .



∃a.
modlist 7→ a

? CLseg(a, null, σ1)
? tree(left , τleft)
? EvalCode
? LoaderCode
? SearchModsCode
? leftValaddr 7→
∧ τleft ⊆ σ1


k(left , leftValaddr)



∃a, σ2, τ2.
modlist 7→ a

? CLseg(a, null, σ2)
? tree(left , τ2)
? EvalCode
? LoaderCode
? SearchModsCode
? leftValaddr 7→
∧ τ2 ⊆ σ2

∧ σ1 ⊆ σ2


The variables cPtr and τright do not appear in this triple, so we can add a

universal quantifier over them, giving:

∀cPtr , τleft, τright.

∃a.
modlist 7→ a

? CLseg(a, null, σ1)
? tree(left , τleft)
? EvalCode
? LoaderCode
? SearchModsCode
? leftValaddr 7→
∧ τleft ⊆ σ1


k(left , leftValaddr)



∃a, σ2, τ2.
modlist 7→ a

? CLseg(a, null, σ2)
? tree(left , τ2)
? EvalCode
? LoaderCode
? SearchModsCode
? leftValaddr 7→
∧ τ2 ⊆ σ2

∧ σ1 ⊆ σ2


Next we use the ?-frame axiom to add the following things

tree 7→ opLbl, cPtr , left , right ,

? tree(right , τright)

? resaddr 7→
∧ τ1 ⊆ σ1

∧ τ1 = {cPtr} ∪ τleft ∪ τright

to the pre- and post-conditions, resulting in the following triple.
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∀cPtr , τleft, τright .

∃a.
modlist 7→ a

? CLseg(a, null, σ1)
? tree 7→ opLbl, cPtr , left , right ,
? tree(left , τleft)
? tree(right , τright)
? Stuff
? leftValaddr 7→
∧ τleft ⊆ σ1

∧ τ1 ⊆ σ1

∧ τ1 = {cPtr} ∪ τleft ∪ τright



C



∃a, σ2, τ2.
modlist 7→ a

? CLseg(a, null, σ2)
? tree 7→ opLbl, cPtr , left , right ,
? tree(left , τ2)
? tree(right , τright)
? Stuff
? leftValaddr 7→
∧ τ2 ⊆ σ2

∧ σ1 ⊆ σ2

∧ τ1 ⊆ σ1

∧ τ1 = {cPtr} ∪ τleft ∪ τright


C = k(left , leftValaddr)

We can drop τleft ⊆ σ1 from the precondition because this is already implied
by the other two pure constraints. We then apply (ForallExists) to all three
universally quantified variables to get the following triple:



∃a, cPtr , τleft, τright.
modlist 7→ a

? CLseg(a, null, σ1)
? tree 7→ opLbl, cPtr , left , right ,
? tree(left , τleft)
? tree(right , τright)
? Stuff
? leftValaddr 7→
∧ τ1 ⊆ σ1

∧ τ1 = {cPtr} ∪ τleft ∪ τright



C



∃a, σ2, τ2, cPtr , τleft, τright.
modlist 7→ a

? CLseg(a, null, σ2)
? tree 7→ opLbl, cPtr , left , right ,
? tree(left , τ2)
? tree(right , τright)
? Stuff
? leftValaddr 7→
∧ τ2 ⊆ σ2

∧ σ1 ⊆ σ2

∧ τ1 ⊆ σ1

∧ τ1 = {cPtr} ∪ τleft ∪ τright


In the postcondition we rename τleft to τ ′.



∃a, cPtr , τleft, τright.
modlist 7→ a

? CLseg(a, null, σ1)
? tree 7→ opLbl, cPtr , left , right ,
? tree(left , τleft)
? tree(right , τright)
? Stuff
? leftValaddr 7→
∧ τ1 ⊆ σ1

∧ τ1 = {cPtr} ∪ τleft ∪ τright



C



∃a, σ2, τ2, cPtr , τ ′, τright.
modlist 7→ a

? CLseg(a, null, σ2)
? tree 7→ opLbl, cPtr , left , right ,
? tree(left , τ2)
? tree(right , τright)
? Stuff
? leftValaddr 7→
∧ τ2 ⊆ σ2

∧ σ1 ⊆ σ2

∧ τ1 ⊆ σ1

∧ τ1 = {cPtr} ∪ τ ′ ∪ τright


Then we rename τ2 in the postcondition to τleft.
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

∃a, cPtr , τleft, τright.
modlist 7→ a

? CLseg(a, null, σ1)
? tree 7→ opLbl, cPtr , left , right ,
? tree(left , τleft)
? tree(right , τright)
? Stuff
? leftValaddr 7→
∧ τ1 ⊆ σ1

∧ τ1 = {cPtr} ∪ τleft ∪ τright



C



∃a, σ2, cPtr , τ ′, τleft, τright.
modlist 7→ a

? CLseg(a, null, σ2)
? tree 7→ opLbl, cPtr , left , right ,
? tree(left , τleft)
? tree(right , τright)
? Stuff
? leftValaddr 7→
∧ τleft ⊆ σ2

∧ σ1 ⊆ σ2

∧ τ1 ⊆ σ1

∧ τ1 = {cPtr} ∪ τ ′ ∪ τright


Then in the postcondition we introduce an existentially quantified τ2, with

value exactly {cPtr} ∪ τleft ∪ τright.



∃a, cPtr , τleft, τright.
modlist 7→ a

? CLseg(a, null, σ1)
? tree 7→ opLbl, cPtr , left , right ,
? tree(left , τleft)
? tree(right , τright)
? Stuff
? leftValaddr 7→
∧ τ1 ⊆ σ1

∧ τ1 = {cPtr} ∪ τleft ∪ τright



C



∃a, σ2, τ2, cPtr , τ ′, τleft, τright.
modlist 7→ a

? CLseg(a, null, σ2)
? tree 7→ opLbl, cPtr , left , right ,
? tree(left , τleft)
? tree(right , τright)
? Stuff
? leftValaddr 7→
∧ τleft ⊆ σ2

∧ σ1 ⊆ σ2

∧ τ1 ⊆ σ1

∧ τ1 = {cPtr} ∪ τ ′ ∪ τright

∧ τ2 = {cPtr} ∪ τleft ∪ τright


Now we can add τ2 ⊆ σ2 to the postcondition, because it is already implied by

the other pure constraints.



∃a, cPtr , τleft, τright.
modlist 7→ a

? CLseg(a, null, σ1)
? tree 7→ opLbl, cPtr , left , right ,
? tree(left , τleft)
? tree(right , τright)
? Stuff
? leftValaddr 7→
∧ τ1 ⊆ σ1

∧ τ1 = {cPtr} ∪ τleft ∪ τright



C



∃a, σ2, τ2, cPtr , τ ′, τleft, τright.
modlist 7→ a

? CLseg(a, null, σ2)
? tree 7→ opLbl, cPtr , left , right ,
? tree(left , τleft)
? tree(right , τright)
? Stuff
? leftValaddr 7→
∧ τleft ⊆ σ2

∧ σ1 ⊆ σ2

∧ τ1 ⊆ σ1

∧ τ1 = {cPtr} ∪ τ ′ ∪ τright

∧ τ2 = {cPtr} ∪ τleft ∪ τright

∧ τ2 ⊆ σ2


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Finally, we drop unrequired pure constraints from the postcondition, leaving
us with:



∃a, cPtr , τleft, τright.
modlist 7→ a

? CLseg(a, null, σ1)
? tree 7→ opLbl, cPtr , left , right ,
? tree(left , τleft)
? tree(right , τright)
? Stuff
? leftValaddr 7→
∧ τ1 ⊆ σ1

∧ τ1 = {cPtr} ∪ τleft ∪ τright



C



∃a, σ2, τ2, cPtr , τleft, τright.
modlist 7→ a

? CLseg(a, null, σ2)
? tree 7→ opLbl, cPtr , left , right ,
? tree(left , τleft)
? tree(right , τright)
? Stuff
? leftValaddr 7→
∧ σ1 ⊆ σ2

∧ τ2 ⊆ σ2

∧ τ2 = {cPtr} ∪ τleft ∪ τright


The final step to obtain the RHS of our implication (A.3) is to use (Mu) to

unfold the EvalCode predicate in the precondition.
The proof for (A.2) is very similar to that for (A.1).
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