
Specification patterns and proofs for recursion
through the store

Nathaniel Charlton and Bernhard Reus

University of Sussex, Brighton

Abstract. Higher-order store means that code can be stored on the
mutable heap that programs manipulate, and is the basis of flexible soft-
ware that can be changed or re-configured at runtime. Specifying such
programs is challenging because of recursion through the store, where
new (mutual) recursions between code are set up on the fly. This paper
presents a series of formal specification patterns that capture increas-
ingly complex uses of recursion through the store. To express the neces-
sary specifications we extend the separation logic for higher-order store
given by Schwinghammer et al. (CSL, 2009), adding parameter passing,
and certain recursively defined families of assertions. Finally, we apply
our specification patterns and rules to an example program that exploits
many of the possibilities offered by higher-order store; this is the first
larger case study conducted with logical techniques based on work by
Schwinghammer et al. (CSL, 2009), and shows that they are practical.

1 Introduction and motivation

Popular “classic” languages like ML, Java and C provide facilities for manipulat-
ing code stored on the heap at runtime. With ML one can store newly generated
function values in heap cells; with Java one can load new classes at runtime and
create objects of those classes on the heap. Even for C, where the code of the
program is usually assumed to be immutable, programs can dynamically load
and unload libraries at runtime, and use function pointers to invoke their code.
Heaps that contain code in this way have been termed higher-order store.

This important language feature is the basis of flexible software systems that
can be changed or re-configured at runtime. For example, the module mechanism
of the Linux kernel allows one to load, unload and update code which extends
the functionality of the kernel, without rebooting the system [9]. Examples of
modules include drivers for hardware devices and filesystems, and executable
interpreters that provide support for running new kinds of executables; by up-
dating function pointers in the “syscall table”, modules can at run time intercept
any system call that the kernel provides. In [19, 14] bugfixing and upgrading C
programs without restarting them is discussed; for instance, a version of the
OpenSSH server is built that can update itself while running when a new ver-
sion becomes available, without disconnecting existing users.

Obtaining logics, and therefore verification methods, for such programs has
been very challenging however, due to the complexity of higher-order heaps (see

for example the discussion in [15]). Semantically, the denotation of such a heap
is a mixed-variant recursively defined domain. The recursive nature of the heap
complicates matters, because in addition to loading, updating and deallocating
code, programs may “tie knots in the store” [13], i.e. create new recursions on
the fly; this is known as recursion through the store. In fact, this knot-tying is
happening whenever code on the heap is used in a recursive way, such as in
the Visitor pattern [8] which involves a mutual recursion between the visitor’s
methods and the visited structure’s methods.

To enable logical reasoning about software that uses higher-order store, the
contributions of this paper are as follows.

– We present and classify patterns of formal specification for programs that
recurse through the store, using recursive assertions and nested triples (Sec-
tion 4) ([18] considered only a very simple form for specifications).

– We state a generic “master pattern” covering all the recursively defined spec-
ification patterns we identified in this paper, and argue that the fixed points
needed to give semantics to such specifications always exist (Section 4).

– We apply the specification and proof techniques we developed to an exam-
ple program which exploits many of the possibilities offered by higher-order
store (Section 5). This is the first larger case study conducted with logical
techniques based on [18], and shows that they are practical. Note that we use
a slight extension of [18], adding call-by-value procedure parameters, induc-
tively defined predicates and certain recursively defined families of assertions
for lists. There is no space for giving proofs, but it should be pointed out
that proofs have been done and we have developed a verification tool for
support. We refer to this in the Conclusions (Section 6).

2 Our running example program

We now present an example program which demonstrates in a simple way some
of the possibilities offered by higher-order store and recursion through the store,
of which it makes essential use. Our program performs evaluation of (binary)
expressions represented as binary trees. A tree node is either an integer leaf or
a labeled binary fork which identifies the expression operator. The distinction is
effected by a label which is 0 for operators and 1 for leaves. For operations we will
look at some typical examples like plus, but it is inherent to the approach that
any (binary) operation can be interpreted. This flexibility is achieved by giving
each tree node a pointer to the evaluation procedure to be used to evaluate it.
The referenced evaluation procedure “implements” the meaning of the labeled
node. This flexibility goes beyond the classic “visitor” pattern, which only works
for a predefined class of node types.

Importantly the code implementing the various evaluations of different tree
nodes is not fixed by the main program; instead, each operator evaluation pro-
cedure is implemented as a loadable module, which can be loaded on demand
and a pointer to which can be saved in the tree nodes. This results in the data
structures shown in Fig. 1.

2

Fig. 1. The data structures used by our example program

The main program. Its code is given in Fig. 2. The eval e statement
invokes the code stored in the heap at address e, with a vector of (value) pa-
rameters e. The shorthand res (explained later) simulates reference parameters.
The expression ‘λx.C’ denotes an unevaluated procedure with body C, taking
formal parameters x, as a value; thus [e] := ‘λx.C’ is used to store procedures
into the heap. As in ML, all variables in our language are immutable, so that
once they are bound to a value, their values do not change. This property of the
language lets us avoid side conditions on variables when studying frame rules.
Our main program’s code assumes the following to be in the heap:

1. The input: variable tree is a pointer to a binary tree as described above
situated on the heap; res is a reference cell to store the result of the evalu-
ation. In case the expression trees also encode variables, an association list
mapping those variables to values is globally available at address assoclist .

2. Module-loading infrastructure: a linked list storing modules, pointed to by a
globally known pointer modlist , and two procedures pointed to by searchMods
and loader . Calling eval [searchMods](opID , res codeaddr) searches the list of
loaded modules for the one implementing operator opID , returning its ad-
dress or null (0) if it is not present. Calling eval [loader](opID , res codeaddr)
always guarantees a module implementing operator opID is loaded, loading
it if necessary, and returning its address.

3

// constant offsets

const CodePtrO = 1

const LeftO = 2

const RightO = 3

const OpIDO = 4

const ValO = 1

[evalTree] :=

‘λ tree, resaddr .

let kind = [tree] in

if kind = 1 then

let val = [tree + ValO] in [resaddr] := val

else

let codePtr = [tree + CodePtrO] in

eval [codePtr](tree, resaddr)

’ ;

eval [evalTree](tree, res res)

Fig. 2. Code for the “main program” part of our running example

3. A“tree visitor” procedure pointed to by evalTree, whose address is known to
all modules and the main program. Note that this visitor does not contain
the individual procedures for node types as in the standard pattern because
we can directly store pointers to them within the nodes.

The main program first stores the procedure evalTree in the heap before calling
it for the given input tree and result cell. For space reasons this code assumes
that the tree and a suitable global modlist are already set up; we do not describe
the initial construction of these data structures. We will, however, demonstrate
that further loading can be done once the evaluator is already in action, namely
from one of the procedures called by evalTree.

Some illustrative modules. Independently of the main program we can
write the loadable modules starting with the basic ones for the evaluation of
nodes that are labeled VAR, PLUS, TIMES etc. The VAR module evaluates its
left subtree to an integer n, and then looks up the value of xn, the variable with
ID n, from the association list (the right subtree is ignored). Fig. 3 contains
an implementation of PLUS. Note how this implementation calls back evalTree
which in turn makes further calls to modules (either for PLUS again or for other
operators): this is mutual recursion through the store.

As well as implementing arithmetic operators, the module mechanism can be
used to extend the program in more dramatic ways. We can implement an op-
erator ASSIGN, so that expression ASSIGN E1 E2 updates the association list,
giving variable xE1 the new value E2, and returns, say, the variable’s new value.
Then we can turn our expression evaluator into an interpreter for a program-
ming language; we can add modules implementing the usual control constructs
such as sequential composition, alternation and repetition. Fig. 3 gives the im-
plementation for WHILE. We emphasise that the WHILE operator can only be
implemented because the code for each operator decides how often and when
to evaluate the subexpressions; if the main program were in charge of the tree
traversal (i.e. a tree fold was being used), WHILE could not be written.

4

PLUS: ‘λ tree, resaddr .

let left = [tree + LeftO] in

let right = [tree + RightO] in

eval [evalTree](left , res leftVal) ;

eval [evalTree](right , res rightVal) ;

[resaddr] := leftVal + rightVal ’

WHILE: ‘λ tree, resaddr .

let left = [tree + LeftO] in

let right = [tree + RightO] in

let b = new 0 in

eval [evalTree](left , b) ;

while [b] do

(eval [evalTree](right , resaddr) ;

eval [evalTree](left , b)) ;

free b’

LOAD OVERWRITE : ‘λ tree, resaddr .

let opcode = [tree + OpIDO] in

eval [loader](opcode, res procptraddr) ;

[tree + CodePtrO] := procptraddr

eval [evalTree](tree, resaddr)’

OSCILLATE : ‘λ tree, resaddr .

let left = [tree + LeftO] in

eval [evalTree](left , resaddr) ;

let selfCodeptr = [tree + CodePtrO] in

let oldCode = [selfCodeptr] in

[selfCodeptr] :=

‘λ tree, resaddr .

let right = [tree + RightO] in

eval [evalTree](right , resaddr) ;

let selfCodeptr = [tree + CodePtrO] in

[selfCodeptr] := oldCode ’ ’

Fig. 3. Code for some modules demonstrating various uses of higher order store

We finish by examining some further modules (also in Fig. 3) which illustrate
more complex uses of higher-order store. The LOAD OVERWRITE procedure
first loads the code for the tree node’s opID into the module list, then updates its
own code pointer before calling that to evaluate the tree with the freshly loaded
procedure. Note that next time the same code pointer in the tree is visited the
newly loaded procedure is executed straight away and no more loading occurs.
This update affects only the pointer in the tree data structure. The operator
OSCILLATE chooses to evaluate the left subtree and returns its result. But it
also updates itself with a version that, when evaluated, picks the right subtree
for evaluation and then updates back to the original version. In this case the
code in the module list itself is updated and thus all tree references pointing to
it from the tree are affected by the update.

We have also considered specialisation of code at runtime. We wrote an im-
plementation of the binomial coefficient

(
n
k

)
:= n!/k!(n − k)! which, when it

detects that its left subtree (i.e. n) is an integer literal, calculates n! (once) and
generates on the fly an optimised implementation of

(
n
k

)
that reuses the value.

3 The programming and assertion languages

The programming language. We work with a simple imperative program-
ming language extended with operations for stored procedures and heap ma-

5

e ::= 0 | 1 | − 1 | . . . | e1 + e2 | . . . | x | ‘λx.C’ Σ ::= x | {e} | ∅ | Σ1 ∪Σ2

C ::= [e1] := e2 | let y = [e] in C | eval e | let x = new e in C

| free e | skip | C1;C2 | if e1 = e2 then C1 else C2

P ::= True | False | P1 ∨ P2 | P1 ∧ P2 | P1 ⇒ P2 | ∀x.P | ∃x.P | e1 = e2 | e1 ≤ e2
| e1 7→ e2 | emp | P1 ? P2 | lseg(e1, e2, Σ) | tree(e1, Σ) | . . .

| {P} e(e) {Q} | P ⊗Q | Σ1 ⊆ Σ2 | (µk R1(x1), . . . , Rn(xn) . A1, . . . ,An)(e)

Fig. 4. Syntax of expressions, commands and assertions

nipulation, as described and used in Section 2. The syntax of the language is
shown in Fig. 4, where x (resp. e) represents a vector of distinct variables (resp.
a vector of expressions). This language extends that in [18] by providing for the
passing of value parameters. For convenience we employ two abbreviations: we
allow ourselves a looping construct while [e] do C, which can be expressed with
recursion through the store, and we write eval [e](e, res v) ; C as shorthand for
let vaddr = new 0 in (eval [e](e, vaddr) ; let v = [vaddr] in C ; free vaddr).

The assertion language. The assertion language, shown in Fig. 4, follows
[18], adding finite sets, more general recursive definitions and inductive predi-
cates, and with some changes to accommodate parameter passing. The language
is based on first-order intuitionistic logic augmented with the standard connec-
tives of separation logic [17], and several further extensions:

Nested triples: Triples are assertions, so they can appear in pre- and post-
conditions of triples. This nested use of triples is crucial because it allows one
to specify stored code behaviourally, i.e. in terms of properties that it satisfies.
The triple {P} e(e) {Q} means that e denotes code satisfying {P} · {Q} when
invoked with parameters e. For code that does not expect any parameters, e
will have length zero and we write simply {P} e {Q}.

Invariant extension: Intuitively invariant extension P ⊗Q denotes a mod-
ification of P where all the pre- and post-conditions of triples inside P are
?-extended with Q. The operator ⊗ is from [4, 18] and is not symmetric.

Inductively defined predicates: Predicates describing the linked lists and
trees we use are available; their defining axioms are given in Fig. 5. The “. . . ” in
Fig. 4 indicates that any similar predicates can be added as required. lseg(x, y,Σ)
denotes a linked list segment from x to y, of nodes of three cells each, where Σ
is the set of addresses of the nodes. lseg<T (·)>(x, y,Σ) says additionally that
the first value in each of the segment’s nodes satisfies T , which is an assertion
with an expression hole. tree(t, Σ) denotes an expression tree rooted at t where
the code pointers pointing out of the tree point to the set of addresses Σ.

(Mutually) Recursively defined assertions: Recursively defined asser-
tions are the key to our work, because they let us reason naturally about chal-

6

lseg(x, y, σ) ⇔ (x = y ∧ σ = ∅ ∧ emp)

∨ (∃nxt , σ′ . x 7→ , ,nxt ? lseg(nxt , y, σ′) ∧ nxt 6= x ∧ σ = σ′ ∪ {x})

lseg 〈T (·)〉 (x, y, σ) ⇔ lseg(x, y, σ) ∧ ∀a.a ∈ σ ⇒ (a 7→ T (·) ? True)

tree(t, τ) ⇔ treefork(t, τ) ∨ (∃n . t 7→ 1, n ∧ τ = ∅)

treefork(t, τ) ⇔ ∃codePtr , left , right , opId , τ ′, τ ′′. τ = {codePtr} ∪ τ ′ ∪ τ ′′

∧ t 7→ 0, codePtr , left , right , opId ? tree(left , τ ′) ? tree(right , τ ′′)

Fig. 5. Inductively defined predicates used to specify and prove our example program.

lenging patterns of execution, such as self-updating code and recursion through
the store. We use the notation µk R1(x1), . . . , Rn(xn) . P1, . . . , Pn to indicate
that n predicates are defined mutually recursively with arguments xi and bodies
Pi, respectively, and the superscript k indicates that the k-th such predicate is
selected. Note that (just to save space) we avoid introducing a syntactic cate-
gory for predicates so (µk R1(x1), . . . , Rn(xn).P1, . . . , Pn)(e) is a formula but
without arguments µk R1(x1), . . . , Rn(xn).P1, . . . , Pn is not a syntactically cor-
rect construct. Throughout the paper we will, however, for the sake of brevity,
use abbreviations of the form A := µk R1(x1), . . . , Rn(xn).P1, . . . , Pn that are
understood to be used with proper arguments in formulae. In Section 4 we will
give a grammar for formulae that can be allowed in those recursive definitions
since existence of fixed points is not automatic. We write A for an allowed for-
mula, i.e. one that is of an appropriate form to ensure the existence of a solution;
recursion variables Ri are only allowed to appear inside such an A .

Each assertion describes a property of states, which consist of an (immutable)
environment and a mutable heap. We use some abbreviations to improve read-
ability: e ∈ Σ := {e} ⊆ Σ, e 7→ := ∃x. e 7→ x and e 7→ P [·] := ∃x. e 7→ x ∧ P [x]
where P [·] is an assertion with an expression hole, such as {Q} · {R}, · = e or
· ≤ e. Additionally we have e 7→ e0, . . . , en := e 7→ e0 ? · · · ? (e+n) 7→ en. The set
of free variables of an expression or assertion is largely obvious, but note that
fv(‘λx.C’) := fv(C)− x.

4 Specification patterns for recursion through the store

In this section we present a series of patterns, of increasing complexity, for spec-
ifying recursion through the store. By pattern we mean the shape of the spec-
ification, in particular the shape of the recursively defined assertion needed to
deal with the recursion through the store.

Recursion via one or finitely many fixed pointers. The specification
Φ1 in Fig. 6 describes code that operates on a data structure D and calls itself
recursively through a pointer g into the heap. Φ2 (also in Fig. 6) describes two

7

Fixed pointers: Φ1 := µ1R . g 7→ ∀x.{D1 ? R } · (p){D2 ? R }

Φ2 := µ1R . g1 7→ ∀x1.{D1? R }·(p1){D2? R } ? g2 7→ ∀x2.{D3? R }·(p2){D4? R }

With dynamic loader: Φloader := Rloaded(g1) ? Rloaded(g2) ? LoaderCode where

Rloaded := µ1 R(c),LoaderCode .

c 7→ ∀x.{D? R(g1) ? R(g2) ? LoaderCode }·(p){D? R(g1) ? R(g2) ? LoaderCode },

loader 7→ ∀a, ID . {a 7→ } · (a, ID) { R(a) }

List of code: CLseg := µ1R(x, y, σ) . lseg< T0(·) >(x, y, σ) where T0(·) is

∀x.{∃a, σ.D ? codelist 7→ a? R(a, null, σ) } · (p){∃a, σ.D ? codelist 7→ a? R(a, null, σ) }

Data structure with pointers: CLseg ′ := µ1R(x, y, σ). lseg< T1(·) >(x, y, σ) where

T1(·) is

∀x .

(
∃a, σ, τ. τ ⊆ σ ∧ D(τ)

? codelist 7→ a ? R(a, null, σ)

)
· (p)

(
∃a, σ, τ. τ ⊆ σ ∧ D(τ)

? codelist 7→ a ? R(a, null, σ)

)

The master pattern: µk R1(x1), . . . , Rn(xn) . A1, . . . ,An

where the following grammar shows what form each Ai can take (here i1, . . . , im and
i′1, . . . , i

′
m′ are in {1, . . . , n}, and P, P ′ are formulae not containing any of R1, . . . , Rn):

S ::= ∀x1. {∃x2 . Ri1(e1)?· · ·?Rim(em)?P} · (x3) {∃x4 . Ri′1
(e′

1)?· · ·?Ri′
m′

(e′
m′)?P ′}

T ::= t 7→ S(·) | t 7→ x ∧ S(x) Ai ::= T1 ? · · · ? Tk | lseg<S>(x)

Fig. 6. Specification patterns for recursion through the store.

pieces of code on the heap that call themselves and each other recursively via two
pointers g1 and g2. Similarly Φ3, Φ4, . . . can be formulated. (The D,D1, D2, . . . in
Fig. 6 are metavariables, and in applications of the patterns they will be replaced
by concrete formulae describing data structures.)

Specification Φ1 allows the code pointed to by g to update itself (like our
OSCILLATE example). Similarly, specification Φ2 allows pieces of code in g1 and
g2 to update themselves and additionally to update each other. Such updates are
permitted as long as the update is with code that behaves in the same way12.

Note that although in this paper we will focus on proving memory safety, our
patterns encompass full functional correctness specifications too. For instance, a
factorial function that calls itself recursively through the store can be function-
1 Unlike the types used, say, in [2], our nested triples can handle updates that do not

preserve code behaviour; examples in this paper do not use such updates, however.
2 There are occasions when it is necessary to explicitly disallow update. This happens

when one has a public and a (stronger) private specification for some code; allowing
“external” updates to the code might preserve only the public specification.

8

ally specified using the following instance of the Φ1 pattern:

µ1R . g 7→ ∀x, n.{x 7→ n ? r 7→ ? R } · (x){x 7→ 0 ? r 7→ n! ? R }

Usage with a dynamic loader. As we pointed out, the preceding speci-
fications permit in place update of code. This treats behaviour like that of our
OSCILLATE module, which explicitly writes code onto the heap; but it does not
account for behaviour like that of LOAD OVERWRITE, where a loader func-
tion of the main program is invoked to load other code that is required. The
specification Φloader in Fig. 6 describes a situation where two pieces of code are
on the heap, calling themselves and each other recursively; but each may also
call a loader procedure provided by the main program. Note the asymmetry in
the specification of the loader, which could not be expressed using ⊗: R appears
in the postcondition but nowhere in the precondition. Note also that we have
omitted the analogous definition of LoaderCode (using µ2) here for brevity.

Recursion via a list of code. The next step up in complexity is where a
linked list is used to hold an arbitrary number of pieces of code. We suppose that
each list node has three fields: the code, an ID number identifying the code, and
a next pointer. The ID numbers allow the pieces of code to locate each other by
searching through the list. We suppose that the cell at codelist contains a pointer
to the start of the list. To reason about this setup, we use lseg<T> (Fig. 5) to
define recursively a predicate CLseg (Fig. 6) for segments of code lists. Note
the existential quantifiers over a and σ in the auxiliary T0: these mean that the
pieces of code are free to extend or update the code list in any way they like, e.g.
by updating themselves or adding or updating other code, as long as the new
code also behaves again in the same way. One can constrain this behaviour by
varying the specification in several ways; for instance, we can allow the pieces of
code in the list to call each other but prohibit them from updating each other.

We point out the similarity between our idealised code lists and for example
the net device list that the Linux kernel uses to manage dynamically loaded and
unloaded network device drivers [6].

Recursion via a set of pointers stored in a data structure. Instead
of finding the right code to call explicitly within a list of type CLseg (using the
ID numbers) the program might set up code pointers referencing code in such a
list so that the pieces of code can invoke each other directly. We suppose that
these direct code pointers live in the data structure D, writing D(τ) for a data
structure whose code pointers collectively point to the set of addresses τ . The
recursive specification we need is CLseg ′ (in Fig. 6); the constraint τ ⊆ σ says
that all code pointers in D must point into the code list. Our example program
combines this kind of recursion through the store with use of a loader function;
we will see the specifications needed in Section 5 where the D(·) will be tree(a, ·).

The master pattern. The last part of Fig. 6 presents a master pattern,
which encompasses all the specification patterns seen so far. We have shown that
recursive definitions of this form admit unique solutions; due to space constraints
the proof of this, which uses the model and techniques of [18], is omitted. The ⊗
operator does not appear in the master pattern, but its effect can be expressed
by unfolding its definition using the distributions axioms for ⊗ as found in [18].

9

CLseg := µ1 CLseg(x, y, σ),EvalCode,LoaderCode,SearchModsCode .

lseg< Mod >(x, y, σ),

evalTree 7→ EvalTriple(·) ,

loader 7→ ∀opID , codePtraddr , σ1 .8>>><>>>:
∃a .

modlist 7→ a

? CLseg(a, null, σ1)

? codePtraddr 7→

9>>>=>>>; · (opID , codePtraddr)

8>>><>>>:
∃a, r, σ2. σ1 ∪ {r} ⊆ σ2 ∧

modlist 7→ a

? CLseg(a, null, σ2)

? codePtraddr 7→ r

9>>>=>>>; ,

searchMods 7→ ∀opID , codePtraddr , a, σ .8><>:
modlist 7→ a

? CLseg(a, null, σ)

? codePtraddr 7→

9>=>; · (opID , codePtraddr)

8>>><>>>:
∃r. (r ∈ σ ∨ r = null) ∧

modlist 7→ a

? CLseg(a, null, σ)

? codePtraddr 7→ r

9>>>=>>>;
where Mod(F) abbreviates

∀t, r, τ1, σ1 .8>>>>>>>>>>><>>>>>>>>>>>:

∃a. τ1 ⊆ σ1 ∧
modlist 7→ a

? CLseg(a, null, σ1)

? treefork(t, τ1)

? EvalCode

? LoaderCode

? SearchModsCode
? r 7→

9>>>>>>>>>>>=>>>>>>>>>>>;
F (t, r)

8>>>>>>>>>>><>>>>>>>>>>>:

∃a, σ2, τ2. τ2 ⊆ σ2 ∧ σ1 ⊆ σ2 ∧
modlist 7→ a

? CLseg(a, null, σ2)

? tree(t, τ2)

? EvalCode

? LoaderCode

? SearchModsCode
? r 7→

9>>>>>>>>>>>=>>>>>>>>>>>;
and EvalTriple(F) is the same, but with tree in place of treefork in the precondition.

Fig. 7. Definitions of predicates used in the specification of our example program.

5 Specifying and proving our example program

In this section we show how to specify memory safety of our example program;
due to space restrictions we can only hint briefly at the proof. Our program
uses three heap data structures (Fig. 1) as well as various procedures stored
on the heap; Fig. 7 defines the predicates we use to describe these. All uses
of µ fit the master pattern. By convention predicates named ProcCode assert
that the variable proc points to some appropriate code stored in the heap. The
abbreviation Mod(F) used here says that code F behaves appropriately to be
used as a module in our system. Mod(F) is almost the same as the specification
for evalTree; the difference is that modules may assume the tree is a fork, because
evalTree has already checked for and handled the leaf case.

10

In the proof obligation of the main program (Fig. 2) we assume specifications
for the procedures loader and searchMods (for which the code is not given):

modlist 7→ a ? CLseg(a, null, σ) ? tree(tree, τ) ∧ τ ⊆ σ
? LoaderCode ? SearchModsCode ? evalTree 7→

ff
MainProg

˘
True

¯
A more specific post-condition could be used to prove the absence of memory

leaks etc., but True is sufficient for memory safety. For the proof we use some
obvious adaptations of rules as presented in [18].

We remark that because the main program doesn’t manipulate the associ-
ation list at all, we can omit AssocList from our proof of the main program.
Once our proof is complete, we can use the so-called deep frame rule (⊗–
Frame in [18]) to add AssocList everywhere it is needed. To prove memory
safety of the modules we must show for each module implementation M that
Mod(M)⊗AssocList . For modules that do not directly access the association list
(e.g. PLUS), we first prove Mod(M) and then use ⊗–Frame to add AssocList .
For modules that do access the association list, e.g. VAR and ASSIGN, one must
prove Mod(M)⊗AssocList directly.

The proofs for the modules are very similar to that for the main program.
One difference is that one must apply the ?-frame axiom to nested triples as
well: e.g. in the module PLUS, the first eval works only on the left subtree, so we
use ?-frame (see [18]) to add the root node and the right subtree as invariants
to the triple for evalTree. Here we see the purpose of the constraint σ1 ⊆ σ2 in
the postconditions of Mod and EvalTriple, which says that modules can update
code in place, and add new code, but may not delete code from the code list.

6 Conclusions and future work

We extended the separation logic of [18] for higher-order store, adding several
features needed to reason about larger, more realistic programs, including pa-
rameter passing and more general recursive specification patterns. We classified
and discussed several such specification patterns, corresponding to increasingly
complex uses of recursion through the store.

The work most closely related to ours (other than [18] on which we build) is
that by Honda et al. [10], which also provides a Hoare logic with nested triples.
It discusses the proof of a factorial function which calls itself through the store,
but does not consider more complex patterns of recursion through the store.
In [10] content quantification is used instead of separation logic, consequently
ignoring frame rules, and total rather than partial correctness is treated.

We plan to extend our language and logic with (extensional) operations for
generating code at runtime. We will also study the relationship between nested
triples and the specifications based on abstract predicate families used in [16].

Finally, the complexity of the involved specifications and proofs demands tool
support. We have developed a verification tool Crowfoot [1] supporting a logic
and a language very similar to that used in this paper. We have used Crowfoot,
for example, to verify correctness of runtime module updates [5], and to verify a

11

version of the example presented in this paper. Use of ?-frame by Crowfoot is
automatic, whereas the use of ⊗-frame is presently guided by user annotations.
Our tool has been inspired by tools for separation logic like Smallfoot [3], jStar
[7] and VeriFast [11] (a small survey of related work can be found in [12]).

Acknowledgements We would like to thank J. Schwinghammer, H. Yang, F. Pot-
tier, and L. Birkedal and for discussions on the usage of recursive families of spec-
ifications. Our research has been supported by EPSRC grant EP/G003173/1.

References

1. The Crowfoot website (includes a version of the example in this paper) available
at: www.informatics.sussex.ac.uk/research/projects/PL4HOStore/crowfoot/.

2. M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 1996.

3. J. Berdine, C. Calcagno, and P. W. O’Hearn. Smallfoot: Modular automatic as-
sertion checking with separation logic. In FMCO, pages 115–137, 2005.

4. L. Birkedal, N. Torp-Smith, and H. Yang. Semantics of separation-logic typing
and higher-order frame rules for Algol-like languages. LMCS, 2(5), 2006.

5. N. Charlton, B. Horsfall, and B. Reus. Formal reasoning about runtime code up-
date. In S. Abiteboul, K. Böhm, C. Koch, and K.-L. Tan, editors, ICDE Workshops,
pages 134–138. IEEE, 2011.

6. J. Corbet, A. Rubini, and G. Kroah-Hartman. Linux device drivers (third edition).
O’Reilly Media, 2005.

7. D. Distefano and M. J. Parkinson. jStar: towards practical verification for Java.
In OOPSLA, pages 213–226, 2008.

8. E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, Reading, MA, 1995.

9. B. Henderson. Linux loadable kernel module HOWTO (v1.09), 2006. Available
online. http://tldp.org/HOWTO/Module-HOWTO/.

10. K. Honda, N. Yoshida, and M. Berger. An observationally complete program logic
for imperative higher-order functions. In LICS, pages 270–279, 2005.

11. B. Jacobs, J. Smans, and F. Piessens. A quick tour of the VeriFast program verifier.
In APLAS, pages 304–311, 2010.

12. N. R. Krishnaswami, J. Aldrich, L. Birkedal, K. Svendsen, and A. Buisse. Design
patterns in separation logic. In TLDI, pages 105–116, 2009.

13. P. J. Landin. The mechanical evaluation of expressions. Computer Journal,
6(4):308–320, Jan. 1964.

14. I. Neamtiu, M. W. Hicks, G. Stoyle, and M. Oriol. Practical dynamic software
updating for C. In PLDI, pages 72–83, 2006.

15. Z. Ni and Z. Shao. Certified assembly programming with embedded code pointers.
In POPL, pages 320–333, 2006.

16. M. J. Parkinson and G. M. Bierman. Separation logic, abstraction and inheritance.
In POPL, pages 75–86, 2008.

17. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In
LICS, pages 55–74, 2002.

18. J. Schwinghammer, L. Birkedal, B. Reus, and H. Yang. Nested Hoare triples and
frame rules for higher-order store. In CSL, pages 440–454, 2009.

19. G. Stoyle, M. Hicks, G. Bierman, P. Sewell, and I. Neamtiu. Mutatis mutandis:
Safe and predictable dynamic software updating. ACM Trans. Program. Lang.
Syst., 29(4), 2007.

12

