
Falsifying safety properties

through games on

over-approximating models

Nathaniel Charlton and Michael Huth

Imperial College London

Workshop on Reachability Problems 2008

Background: verifying assertions

• Treat the program as (infinite-state) transition system

– states are pairs (N, s): N is program counter, s is memory

• Model assertion violations as transitions to special error location

– Error location unreachable IFF Program correct

• To overcome infiniteness of state space, use abstraction

– Build finite trans. sys. that over-approximates concrete one

– states are (N, a): N is prog. counter, a abstracts memory

• Abstract system has more paths

– Locations unreachable in abstract system are also
unreachable in concrete program

– Error location unreachable IMPLIES Program correct

What about falsification?

• What if the error location is reachable in the abstract system?

– cannot conclude that the program is incorrect

– path to the error location may be “artifact of abstraction”

This talk: falsification via games

• We present a falsification method based on 2-player GAMES

– reasonably simple, and independent of abstraction used

• Exploit two properties of programs:

– concrete semantics are serial

– most language constructs are deterministic

• Method of falsifying via games is essentially FREE:

– no changes to abstract model construction process

– falsification check runs in time linear in model size

• Therefore, worth trying even if frequency of success is low

Programs are serial

• Transition systems generated by programs are serial:

– every node has a successor

– in programs, execution doesn’t just stop for no reason

• unlike transition systems in general

– such as transition systems specified using process algebra

Confinement of non-determinism

• In many programming languages, nearly all statements have

deterministic semantics

– Non-determinism confined to a small number of

identifiable points

• In fact, treat non-deterministic statements as syntactic sugar

– all non-determinism comes from Choice hyperedge

All states have

two successors

at a Choice

statement

Falsification (1)

• Main idea: an abstract state is hopeless if, once execution

reaches that state, it inevitably flows to the error location

– program is incorrect if starting state is hopeless

• We give deduction rules for identifying hopeless states.

• Label (with function) each abstract state as either F or P

– Intuition is that F and P represent two players

– F wants to Falsify the program, P wants to Prevent this

• (In this talk) F nodes are those located at a Choice statement

Falsification (2)

Deduction rules for hopelessness:

Falsification (2)

Deduction rules for hopelessness:

Justified by

seriality

Falsification (2)

Deduction rules for hopelessness:

Justified by

seriality

Justified by

semantics of

Choice edges

Algorithm for Falsification

1. Build abstract model as ususal, attempting to verify prog.

2. If model doesn’t verify program, try falsification check:

3. Repeatedly apply deduction rules for hopelessness

– eventually no more applications will be possible

– this computes a set of hopeless nodes

– same as computing winning region in an attractor game
between players F and P

4. Check whether starting state is in computed set of nodes

• Takes only linear time O(n+e)

– where n and e are numbers of nodes and edges

– can be programmed to visit each edge only once

Example of falsification

Consider this program:

havocN n; // choose an arbitrary natural number

y := n – 1;

while ((x+1)*(x+1) < n) // Find integer square root of n

{ x := x + 1 }

assert (x*x <= n && (x+1)*(x+1) < n);

Example of falsification

• Now introduce a “mistake”: reverse inequality in loop guard.

– What happens when we try to verify the broken program?

havocN n; // choose an arbitrary natural number

y := n – 1;

while ((x+1)*(x+1) > n) // Find integer square root of n

{ x := x + 1 }

assert (x*x <= n && (x+1)*(x+1) < n);

• Abstract-check-refine

discipline says:

– start with a simple

abstraction, then refine

if necessary

– so we’ll start with just

sign analysis

• Program isn’t verified because there’s a path to the error location

– But is it a real error?

– Let’s run our falsification check…

• Use the h-already-there rule

– mark states at the error location as Hopeless

H H

• Use the h-P-move rule

– when there’s only one possible successor, execution must

flow there (by seriality)

H H

H

H H

HH HH

H H

HH HH

• Here there are two susccessors

– abstraction used wasn’t precise enough to determine

which way execution goes

– but it doesn’t matter, as both are hopeless

H

H H

HH HH

• To finish the falsification, need the h-F-move rule

– to deal with the Choice (hyper)edge

H

• To finish the falsification, need the h-F-move rule

– requires just one (instead of all) successors to be hopeless

H

H

H

• To finish the falsification, need the h-F-move rule

– requires just one (instead of all) successors to be hopeless

H

H HH

H

H

• Intuitively player F can play to force generation of positive n

– which breaks the program

• Won’t work if Choice treated in same manner as other statements

Implementation

• This check is implemented in HECTOR, our software model

checker

– HECTOR attempts falsification whenever a verification

has failed

• HECTOR builds abstract models of imperative programs using

“pluggable” abstractions:

– E.g. predicate abstraction, three-valued shape analysis,

sign analysis, type-system-based abstraction

– and “good” products of any of the above

• Extends to recursive procedures (via summarisation)

Existing falsification approaches

1. Search for a concrete counterexample

– programs’ transition systems typically infinite state

– and may be infinitely branching

2. Test whether abstract counterexample path is feasible

– not possible in general (underlying SAT problem is undec.)

3. Introduce under-approximating “must transitions”

– extra work: need to construct and manage two transition relations

4. Use “must hypertransitions”

– more precise than 3., but still need two transition relations

More about this in the paper.

Remarks

• Our method obtains falsifications that 1. - 3. do not

– relative to a particular abstraction

– extreme example: if { Goldbach conjecture holds }

 then ERROR else ERROR

– approaches 1. - 3. must discover which branch is taken!

• Must hypertransitions cope with this

– but still require separate construction of a must relation

– and extra “transfer functions” for under-approximation

– whereas we don’t (because we exploit confinement of non-

determinism)

• Playing a safety game seems conceptually simpler

Summary

• We presented a method for falsifying simple safety properties

(i.e. establishing rechability) based on GAMES

– exploits seriality and confinement of non-determinism

• Attributes of method:

– conceptually simple

– works with any abstraction domain

– gives falsifications unobtainable by main current methods

– no changes to abstract model construction process

– falsification check runs in time linear in model size

– therefore, essentially FREE.

• Therefore, worth trying even if frequency of success is low

