

• Higher order store means that mutable state, such as the heap, can be used to store code/commands/procedures

- Higher order store means that mutable state, such as the heap, can be used to store code/commands/procedures
- Languages with higher order store can serve as a foundation to model e.g.
 - dynamic loading, runtime code generation, "hot update", self-modifying code

- Higher order store means that mutable state, such as the heap, can be used to store code/commands/procedures
- Languages with higher order store can serve as a foundation to model e.g.
 - dynamic loading, runtime code generation, "hot update", self-modifying code
- We are interested in logical reasoning for such languages
 - we use separation logic (a variant of Hoare logic)

- Higher order store means that mutable state, such as the heap, can be used to store code/commands/procedures
- Languages with higher order store can serve as a foundation to model e.g.
 - dynamic loading, runtime code generation, "hot update", self-modifying code
- We are interested in logical reasoning for such languages
 - we use separation logic (a variant of Hoare logic)
- Particularly interested in hidden state

Hidden state

How can we reason about hidden state effectively and soundly?

How to reason about invocation of a higher order procedure when one of the arguments is a procedure with its own state

- Hidden state is really great: it leads to modular programs and modular proofs
 - But it's also tricky to reason about correctly

A program featuring hidden state

written in a minimal language with higher order store

```
let runIt = \text{new }`\lambda f. \text{ eval}[f]()' in let f_1 = \text{new }`\text{skip'} in let ctr = \text{new }0 in let f_2 = \text{new }`[ctr] := [ctr] + 1' in eval [runIt](f_2); free ctr; eval [runIt](f_1)
```

A program featuring hidden state

written in a minimal language with higher order store

```
let runIt = \text{new } `\lambda f. \text{ eval}[f]()' in let f_1 = \text{new } `\text{skip'} \text{ in} let ctr = \text{new } 0 in let f_2 = \text{new } `[ctr] := [ctr] + 1' in eval [runIt](f_2); free ctr; eval [runIt](f_1)
```

The ctr cell is "hidden state" in this call

This program is completely safe – it cannot crash.

Can we prove this?

Problem considered in this talk

PROBLEM:

- How can we reason about hidden state effectively and soundly?
- A logical axiom, called the Deep Frame Axiom, has been previously proposed for reasoning about hidden state (Schwinghammer et al (CSL, 2008))
 - at first glance, appears to be natural and exactly what we need

Problem considered in this talk

PROBLEM:

- How can we reason about hidden state effectively and soundly?
- A logical axiom, called the Deep Frame Axiom, has been previously proposed for reasoning about hidden state (Schwinghammer et al (CSL, 2008))
 - at first glance, appears to be natural and exactly what we need
- Unfortunately it isn't sound!
 - we can use it to prove correctness of a crashing program

Problem considered in this talk

PROBLEM:

- How can we reason about hidden state effectively and soundly?
- A logical axiom, called the Deep Frame Axiom, has been previously proposed for reasoning about hidden state (Schwinghammer et al (CSL, 2008))
 - at first glance, appears to be natural and exactly what we need
- Unfortunately it isn't sound!
 - we can use it to prove correctness of a crashing program

SOLUTION:

- Propose a sound specification idiom which we can use instead
 - using second order logic (quantification over assertions)

Nested Hoare triples

We can reason about higher order store using a logic with nested triples, based on Schwinghammer et al, CSL, 2008. For example, consider our code for runlt:

$$\lambda f$$
. eval $[f]()$

This code can be specified by a Hoare triple:

$$\left\{\begin{array}{ll} f \mapsto \{\mathsf{emp}\} \, \cdot () \, \, \{\mathsf{emp}\} \, \, \right\} \\ \forall f. & \cdot (f) \\ \\ \left\{\begin{array}{ll} f \mapsto \{\mathsf{emp}\} \, \cdot () \, \, \{\mathsf{emp}\} \, \, \right\} \end{array} \right.$$

The code is higher order so pre- and post-conditions contain Hoare triples.

```
let runIt = \text{new } '\lambda f. \text{ eval}[f]()' in
let f_1 = \text{new 'skip'} in
let ctr = \text{new } 0 \text{ in}
let f_2 = \text{new '}[ctr] := [ctr] + 1' in
 eval [runIt](f_2);
 free ctr;
 eval [runIt](f_1)
                  \{ \text{ True } \}
```

 $\{ emp \}$

```
\{ f \mapsto \{\mathsf{emp}\} \cdot () \ \{\mathsf{emp}\} \}
                                                    \forall f. \lambda f. \text{ eval}[f]()
                                                        m{/} \left\{ \hspace{0.1cm} f \mapsto \{\mathsf{emp}\} \hspace{0.1cm} \cdot () \hspace{0.1cm} \left\{\mathsf{emp}\right\} \hspace{0.1cm} 
ight\}
                         \{ emp \}
let runIt = \text{new } '\lambda f. \text{ eval}[f]()' in
let f_1 = \text{new 'skip'} in
\det ctr = \text{new } 0 \text{ in }
let f_2 = \text{new '}[ctr] := [ctr] + 1' in
  eval [runIt](f_2);
  free ctr;
  eval [runIt](f_1)
                         \{ \text{True } \}
```

```
\left\{\begin{array}{c} \{f\mapsto\{\mathsf{emp}\}\cdot()\;\{\mathsf{emp}\}\;\}\\ runIt\mapsto\forall f. & \cdot(f)\\ \{f\mapsto\{\mathsf{emp}\}\cdot()\;\{\mathsf{emp}\}\;\} \end{array}\right\} let f_1=\mathsf{new}\;\mathsf{`skip'}\;\mathsf{in} let ctr=\mathsf{new}\;0\;\mathsf{in} let f_2=\mathsf{new}\;([ctr]:=[ctr]+1'\;\mathsf{in}
```

{ True }

eval $[runIt](f_2)$;

eval $[runIt](f_1)$

free ctr;

```
\left\{\begin{array}{ll} f \mapsto \{\mathsf{emp}\} \ \cdot () \ \{\mathsf{emp}\} \end{array}\right\} runIt \mapsto \forall f. \qquad \qquad \cdot (f) \left\{\begin{array}{ll} f \mapsto \{\mathsf{emp}\} \ \cdot () \ \{\mathsf{emp}\} \end{array}\right\}
                                                                                              oldsymbol{oldsymbol{oldsymbol{eta}}} skip \{\mathsf{emp}\}
            let f_1 = \text{new 'skip' in} \longleftarrow
            let ctr = \text{new }0 in
            let f_2 = \text{new '}[ctr] := [ctr] + 1' in
               eval [runIt](f_2);
               free ctr;
               eval [runIt](f_1)
                                          { True }
```

```
\{f \mapsto \{\mathsf{emp}\} \cdot () \ \{\mathsf{emp}\} \}
 runIt \mapsto \forall f. \cdot (f)
\left\{\begin{array}{c} f \mapsto \{\mathsf{emp}\} \ \cdot () \ \{\mathsf{emp}\} \end{array}\right\} \star f_1 \mapsto \{\mathsf{emp}\} \ \cdot () \ \{\mathsf{emp}\}
           let ctr = \text{new } 0 \text{ in}
           let f_2 = \text{new '}[ctr] := [ctr] + 1' in
             eval [runIt](f_2);
             free ctr;
             eval [runIt](f_1)
                                  { True }
```

```
\left\{\begin{array}{ll} f \mapsto \{\mathsf{emp}\} \cdot () \ \{\mathsf{emp}\} \end{array}\right\} \\ runIt \mapsto \forall f. \\ \left\{\begin{array}{ll} f \mapsto \{\mathsf{emp}\} \cdot () \ \{\mathsf{emp}\} \end{array}\right\} \\ \star f_1 \mapsto \{\mathsf{emp}\} \cdot () \ \{\mathsf{emp}\} \\ \star \mathit{ctr} \mapsto 0 \end{array}\right\}
```

```
\begin{array}{l} \text{let } f_2 = \text{new `}[ctr] := [ctr] + 1 \text{' in} \\ \text{eval } [runIt](f_2) \ ; \\ \text{free } ctr \ ; \\ \text{eval } [runIt](f_1) \end{array}
```

 $\{ \text{True } \}$

```
\left\{\begin{array}{ll} f \mapsto \{\mathsf{emp}\} \cdot () \ \{\mathsf{emp}\} \end{array}\right\} \\ runIt \mapsto \forall f. \\ \left\{\begin{array}{ll} f \mapsto \{\mathsf{emp}\} \cdot () \ \{\mathsf{emp}\} \end{array}\right\} \\ \star f_1 \mapsto \{\mathsf{emp}\} \cdot () \ \{\mathsf{emp}\} \\ \star \mathit{ctr} \mapsto 0 \end{array}\right\}
```

```
\begin{array}{l} \mathsf{let}\ f_2 = \mathsf{new}\ `[\mathit{ctr}] := [\mathit{ctr}] + 1 \text{' in} \\ \mathsf{eval}\ [\mathit{runIt}](f_2)\ ; & \left\{\begin{array}{c} \mathit{ctr} \mapsto \bot \\ \mathsf{ctr} \end{array}\right\} \\ \mathsf{eval}\ [\mathit{runIt}](f_1) & \left\{\begin{array}{c} \mathit{ctr} \end{bmatrix} := [\mathit{ctr}] + 1 \\ \left\{\begin{array}{c} \mathit{ctr} \mapsto \bot \\ \mathsf{ctr} \mapsto \bot \end{array}\right\} \end{array}
```

```
\{ f \mapsto \{\mathsf{emp}\} \cdot () \ \{\mathsf{emp}\} \}
 runIt \mapsto \forall f.
                             \left\{ f \mapsto \overline{\{\mathsf{emp}\} \cdot () \{\mathsf{emp}\}} \right\}
\star f_1 \mapsto \{\mathsf{emp}\} \cdot () \ \{\mathsf{emp}\}
\star ctr \mapsto 0
\star f_2 \mapsto \{ctr \mapsto \_\} \cdot () \{ctr \mapsto \_\}
                             eval [runIt](f_2);
                             free ctr;
                             eval [runIt](f_1)
                                   { True }
```

```
 \left\{ \begin{array}{l} f \mapsto \{\mathsf{emp}\} \cdot () \ \{\mathsf{emp}\} \ \right\} \\ runIt \mapsto \forall f. & \cdot (f) \\ \qquad \qquad \left\{ \begin{array}{l} f \mapsto \{\mathsf{emp}\} \cdot () \ \{\mathsf{emp}\} \ \right\} \\ \star f_1 \mapsto \{\mathsf{emp}\} \cdot () \ \{\mathsf{emp}\} \\ \star \mathit{ctr} \mapsto 0 \\ \star f_2 \mapsto \{\mathit{ctr} \mapsto \_\} \cdot () \ \{\mathit{ctr} \mapsto \_\} \end{array} \right.
```

```
eval [runIt](f_2);
free ctr;
eval [runIt](f_1)
```

 $\{ \text{ True } \}$

Now we have a mismatch because the code in *runlt* doesn't know about the counter cell.

What can we do??

"Deep" framing

We introduce an operator \bigotimes for adding invariants to specifications:

 $P\otimes I$ means, informally, add I to every pre- and post-condition in P, at all nesting levels.

"Deep" framing

We introduce an operator \otimes for adding invariants to specifications:

 $P \otimes I$ means, informally, add I to every pre- and post-condition in P, at all nesting levels.

E.g.

$$\left(\begin{array}{ccc} \left\{ \begin{array}{ccc} f \mapsto \{\mathsf{emp}\} \, \cdot () \, \, \{\mathsf{emp}\} \end{array} \right\} \\ \forall f. & \cdot (f) & \\ \left\{ \begin{array}{ccc} f \mapsto \{\mathsf{emp}\} \, \cdot () \, \, \{\mathsf{emp}\} \end{array} \right\} \end{array} \right) \otimes \mathit{ctr} \mapsto \bot$$

"Deep" framing

We introduce an operator \otimes for adding invariants to specifications:

 $P \otimes I$ means, informally, add I to every pre- and post-condition in P, at all nesting levels.

E.g.

$$\left(\begin{array}{ccc} \left\{ \begin{array}{ccc} f \mapsto \{\mathsf{emp}\} \, \cdot () \, \, \{\mathsf{emp}\} \end{array} \right\} \\ \forall f. & \cdot (f) & \\ \left\{ \begin{array}{ccc} f \mapsto \{\mathsf{emp}\} \, \cdot () \, \, \{\mathsf{emp}\} \end{array} \right\} \end{array} \right) \otimes \mathit{ctr} \mapsto \bot$$

means

$$\left\{ \begin{array}{l} f \mapsto \{ \mathsf{emp} \, \star ctr \mapsto \, _ \} \, \cdot () \, \left\{ \mathsf{emp} \, \star ctr \mapsto \, _ \right\} \, \star ctr \mapsto \, _ \right\} \\ \forall f. \qquad \qquad \qquad \cdot (f) \\ \left\{ \begin{array}{l} f \mapsto \{ \mathsf{emp} \, \star ctr \mapsto \, _ \} \, \cdot () \, \left\{ \mathsf{emp} \, \star ctr \mapsto \, _ \right\} \, \star ctr \mapsto \, _ \right\} \end{array} \right.$$

Deep Frame Axiom and Rule

Two mechanisms for adding invariants to specifications were considered by Schwinghammer et al (CSL, 2008)

Deep Frame Rule
$$\frac{P}{P \otimes I}$$

DEEP FRAME AXIOM
$$P \Rightarrow P \otimes I$$

Deep Frame Axiom and Rule

Two mechanisms for adding invariants to specifications were considered by Schwinghammer et al (CSL, 2008)

Deep Frame Rule Deep Frame Axiom
$$\frac{P}{P \otimes I}$$
 $P \Rightarrow P \otimes I$

The Deep Frame Rule can add invariants to a specification

- but only at the top level of the proof

Deep Frame Axiom and Rule

Two mechanisms for adding invariants to specifications were considered by Schwinghammer et al (CSL, 2008)

Deep Frame Rule Deep Frame Axiom
$$\frac{P}{P \otimes I}$$
 $P \Rightarrow P \otimes I$

The Deep Frame Rule can add invariants to a specification

- but only at the top level of the proof

The Deep Frame Axiom is stronger

- can also be used inside pre- and post-conditions of triples

```
 \left\{ \begin{array}{l} f \mapsto \{\mathsf{emp}\} \cdot () \ \{\mathsf{emp}\} \end{array} \right\} \\ runIt \mapsto \forall f. \\ \left\{ \begin{array}{l} f \mapsto \{\mathsf{emp}\} \cdot () \ \{\mathsf{emp}\} \end{array} \right\} \\ \star f_1 \mapsto \{\mathsf{emp}\} \cdot () \ \{\mathsf{emp}\} \\ \star \mathit{ctr} \mapsto 0 \\ \star f_2 \mapsto \{\mathit{ctr} \mapsto \_\} \cdot () \ \{\mathit{ctr} \mapsto \_\} \end{array} \right\}
```

```
eval [runIt](f_2);
free ctr;
eval [runIt](f_1)
```

 $\{ \text{True } \}$

Here is our mismatch again.

Let's use the Deep Frame Axiom to add $\ ctr \mapsto \ _$ as an invariant to the specification for $\ runlt$

```
 \left\{ \begin{array}{l} f \mapsto \{ctr \mapsto \_\} \cdot () \ \{ctr \mapsto \_\} \star ctr \mapsto \_ \ \} \\ runIt \mapsto \forall f. \\ \qquad \qquad \qquad (f) \\ \qquad \qquad \left\{ \begin{array}{l} f \mapsto \{ctr \mapsto \_\} \cdot () \ \{ctr \mapsto \_\} \star ctr \mapsto \_ \ \} \\ \star f_1 \mapsto \{\mathsf{emp}\} \cdot () \ \{\mathsf{emp}\} \\ \star ctr \mapsto 0 \\ \star f_2 \mapsto \{ctr \mapsto \_\} \cdot () \ \{ctr \mapsto \_\} \end{array} \right.
```

```
eval [runIt](f_2);
free ctr;
eval [runIt](f_1)
```

Now we can reason about the call and we are happy ©

The Deep Frame Axiom is unsound

- We've just seen why we want the Deep Frame Axiom
 - unfortunately it is not sound; only the weaker rule version is sound

The Deep Frame Axiom is unsound

- We've just seen why we want the Deep Frame Axiom
 - unfortunately it is not sound; only the weaker rule version is sound
- Because we can hide state, when doing a proof we might already have hidden some state to get the precondition!
 - So in general the code in *runIt* may have access to heap cells we don't know about

The Deep Frame Axiom is unsound

- We've just seen why we want the Deep Frame Axiom
 - unfortunately it is not sound; only the weaker rule version is sound
- Because we can hide state, when doing a proof we might already have hidden some state to get the precondition!
 - So in general the code in *runlt* may have access to heap cells we don't know about
- If the *runIt* code copies "outside" code into the hidden cells, things can go wrong:
 - The program will crash
 - But we can still prove it correct using the Deep Frame Axiom

```
let hidden= new 'skip' in let runIt= new '\lambda f . eval[hidden]() ; [hidden]:=[f]' in
```

```
let f_1 = new 'skip' in let ctr = new 0 in let f_2 = new '[ctr] := [ctr] + 1' in eval [runIt](f_2) ; free ctr ; eval [runIt](f_1)
```

CRASH!

```
\left\{\begin{array}{l} \text{emp }\right\}\\ \text{let }hidden=\text{new 'skip' in }\\ \text{let }runIt=\text{new '}\lambda f\text{ . eval}[hidden]()\text{ ; }[hidden]:=[f]\text{' in }\\ \end{array}
```

```
let f_1 = \text{new 'skip'} in let ctr = \text{new 0} in let f_2 = \text{new '}[ctr] := [ctr] + 1' in eval [runIt](f_2); free ctr; eval [runIt](f_1) \Big\{ \text{ True } \Big\}
```

```
\{ emp \}
let hidden = new 'skip' in
let runIt = \text{new } \lambda f . eval[hidden]() ; [hidden] := [f]' in
                         \{f \mapsto \{\mathsf{emp}\} \cdot () \ \{\mathsf{emp}\} \}
                                                                      \otimes hidden \mapsto \cdots
    runIt \mapsto \forall f.
                                           \cdot (f)
                         \{ f \mapsto \{\mathsf{emp}\} \cdot () \{\mathsf{emp}\} \}
    \star hidden \mapsto \cdots
 let f_1 = \text{new 'skip' in}
  let ctr = \text{new } 0 \text{ in}
 let f_2 = \text{new '}[ctr] := [ctr] + 1' in
   eval [runIt](f_2);
   free ctr;
   eval [runIt](f_1)
                                          { True }
```

```
\{ emp \}
let hidden = new 'skip' in
let runIt = \text{new } \lambda f . eval[hidden]() ; [hidden] := [f]' in
                             \{ f \mapsto \{\mathsf{emp}\} \cdot () \{\mathsf{emp}\} \}
         runIt \mapsto \forall f.
                             \{ f \mapsto \{\mathsf{emp}\} \cdot () \{\mathsf{emp}\} \}
 let f_1 = \text{new 'skip'} in
  let ctr = \text{new } 0 \text{ in}
 let f_2 = \text{new '}[ctr] := [ctr] + 1' in
   eval [runIt](f_2);
   free ctr;
   eval [runIt](f_1)
                                   True
```

```
\{ emp \}
let hidden = new 'skip' in
let runIt = \text{new } \lambda f . eval[hidden]() ; [hidden] := [f]' in
                            \{ f \mapsto \{\mathsf{emp}\} \cdot () \{\mathsf{emp}\} \}
         \overline{runIt} \mapsto \forall f.
                            \{ f \mapsto \{ emp \} \cdot () \{ emp \} \}
 let f_1 = \text{new 'skip'} in
 let ctr = \text{new } 0 \text{ in}
                                                          Obviously this is bad –
 let f_2 = \text{new '}[ctr] := [ctr] + 1' in
                                                          we seem to need the
                                                          Deep Frame Axiom but
   eval [runIt](f_2);
                                                         it is unsound.
   free ctr;
   eval [runIt](f_1)
                                                          How to resolve the
                                                          problem?
                                  True
```

- We've seen two implementations for *runlt*:
 - one where adding invariants in axiom style is safe, another where it is not

- We've seen two implementations for *runlt*:
 - one where adding invariants in axiom style is safe, another where it is not
- Thus, whether or not it is safe to add invariants must become part of the specification agreed between the *runlt* code and its clients.

- We've seen two implementations for runlt:
 - one where adding invariants in axiom style is safe, another where it is not
- Thus, whether or not it is safe to add invariants must become part of the specification agreed between the runlt code and its clients.
- This can be expressed easily using second order logic:

$$orall X. \ orall f. \ \left\{ egin{array}{ll} f \mapsto \{\mathsf{emp}\} \ \cdot () \ \{\mathsf{emp}\} \end{array}
ight\} \ \left\{ egin{array}{ll} f \mapsto \{\mathsf{emp}\} \ \cdot () \ \{\mathsf{emp}\} \end{array}
ight\} \end{array}
ight\} \otimes X$$

- We've seen two implementations for *runlt*:
 - one where adding invariants in axiom style is safe, another where it is not
- Thus, whether or not it is safe to add invariants must become part of the specification agreed between the runlt code and its clients.
- This can be expressed easily using second order logic:

$$orall X. \ orall f. \left(egin{array}{ccc} f \mapsto \{\mathsf{emp}\} \ \cdot () & \{\mathsf{emp}\} \ \end{array}
ight) \otimes X \ \left\{ \begin{array}{cccc} f \mapsto \{\mathsf{emp}\} \ \cdot () & \{\mathsf{emp}\} \end{array}
ight\} \end{array}
ight)$$

With this idiom we can prove the correct program, but not the faulty one

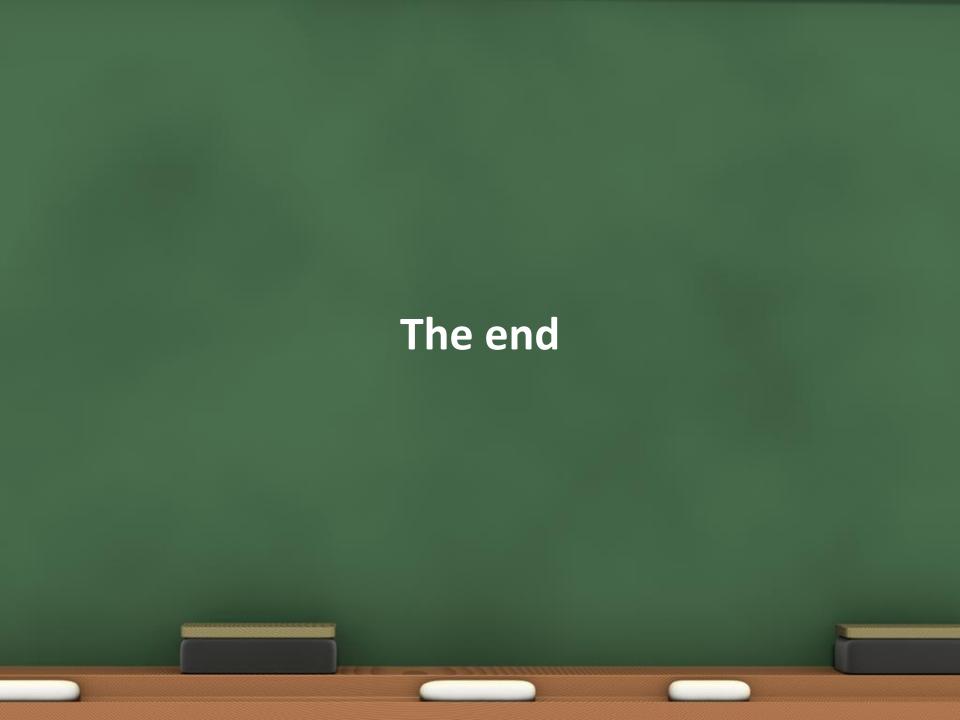
```
 \left\{ \begin{array}{l} runIt \mapsto \forall X. \ \forall f. \\ \left\{ \begin{array}{l} f \mapsto \{\mathsf{emp}\} \ \cdot () \ \{\mathsf{emp}\} \end{array} \right\} \\ \left\{ \begin{array}{l} f \mapsto \{\mathsf{emp}\} \ \cdot () \ \{\mathsf{emp}\} \end{array} \right\} \end{array} \right\} \otimes X \end{array} \right\}
```

```
\begin{array}{l} \text{let } f_1 = \text{new 'skip' in} \\ \text{let } ctr = \text{new 0 in} \\ \text{let } f_2 = \text{new '}[ctr] := [ctr] + 1 \text{' in} \\ \text{eval } [runIt](f_2) \text{ ;} \\ \text{free } ctr \text{ ;} \\ \text{eval } [runIt](f_1) \end{array} \qquad \begin{array}{l} \text{We can easily prove this;} \\ \text{just instantiate X with} \\ & ctr \mapsto \bot \\ \text{when you need to } \odot \end{array}
```

- Commands specified with $\ orall X.\cdot\cdot\cdot\otimes X$ may still have hidden state
 - and they may still use that hidden state for storing code

- Commands specified with $\ orall X.\dots \otimes X$ may still have hidden state
 - and they may still use that hidden state for storing code
- Copying outside code into hidden state seems to be what is ruled out
 - We would like to be able to be more precise about this

- Commands specified with $\ orall X.\cdot\cdot\cdot\otimes X$ may still have hidden state
 - and they may still use that hidden state for storing code
- Copying outside code into hidden state seems to be what is ruled out
 - We would like to be able to be more precise about this
- In proofs we have done so far, using the $~\forall X.\cdots\otimes X~$ specification didn't generate much extra work
 - We would like to be more precise about this too



E.g. for the implementation of runIt which doesn't use hidden state, the extra $\forall X.\cdots \otimes X$ comes for free via the DFR:

$$\left\{\begin{array}{ll} f \mapsto \{\mathsf{emp}\} \, \cdot () \, \, \{\mathsf{emp}\} \end{array}\right. \\ \forall f. \qquad \lambda f. \, \mathsf{eval}[f]() \\ & \left\{\begin{array}{ll} f \mapsto \{\mathsf{emp}\} \, \cdot () \, \, \{\mathsf{emp}\} \end{array}\right. \end{array}\right. \text{DFR} \\ \hline \left\{\begin{array}{ll} \left\{\begin{array}{ll} f \mapsto \{\mathsf{emp}\} \, \cdot () \, \, \{\mathsf{emp}\} \end{array}\right. \\ \left\{\begin{array}{ll} \lambda f. \, \, \mathsf{eval}[f]() \\ \left\{\begin{array}{ll} f \mapsto \{\mathsf{emp}\} \, \cdot () \, \, \{\mathsf{emp}\} \end{array}\right. \end{array}\right. \right\} \\ \hline \left\{\begin{array}{ll} \left\{\begin{array}{ll} f \mapsto \{\mathsf{emp}\} \, \cdot () \, \, \{\mathsf{emp}\} \end{array}\right. \\ \left\{\begin{array}{ll} \left\{\begin{array}{ll} f \mapsto \{\mathsf{emp}\} \, \cdot () \, \, \{\mathsf{emp}\} \end{array}\right. \\ \left\{\begin{array}{ll} \lambda f. \, \, \mathsf{eval}[f]() \\ \left\{\begin{array}{ll} f \mapsto \{\mathsf{emp}\} \, \cdot () \, \, \{\mathsf{emp}\} \end{array}\right. \right\} \end{array}\right. \end{array} \right. \\ \end{array} \right. \\ \forall X. \, \forall f. \left\{\begin{array}{ll} f \mapsto \{\mathsf{emp}\} \, \cdot () \, \, \{\mathsf{emp}\} \end{array}\right. \right\} \\ \left\{\begin{array}{ll} f \mapsto \{\mathsf{emp}\} \, \cdot () \, \, \{\mathsf{emp}\} \end{array}\right. \right\}$$

```
let hidden = new 'skip' in
let runIt = \text{new } \lambda f . eval[hidden]() ; [hidden] := [f]' in
 let ctr = \text{new } 0 \text{ in}
 let f_1 = \text{new 'skip'} in
 let f_2 = \text{new '}[ctr] := [ctr] + 1' in
   eval [runIt](f_2);
   [ctr] := 0;
   eval [runIt](f_1);
   if [ctr] \neq 0 then abort else skip
```

$$e ::= 0 | 1 | \dots | e_1 + e_2 | \dots | x | '\lambda \vec{x}.C'$$

$$C::=$$
 let $y=[e]$ in $C\mid [e_1]:=e_2\mid$ let $x=$ new \vec{e} in $C\mid$ free e \mid eval $[e](\vec{e})$ \mid skip $\mid C_1;C_2\mid$ if $e_1=e_2$ then C_1 else C_2

Absolutely the end