
A deeper understanding
of the deep frame axiom

(frame rules for higher order store)

Billiejoe (Nathaniel) Charlton and Bernhard Reus

University of Sussex

Setting the scene

• Higher order store means that mutable state, such as the heap, can be used to
store code/commands/procedures

Setting the scene

• Higher order store means that mutable state, such as the heap, can be used to
store code/commands/procedures

• Languages with higher order store can serve as a foundation to model e.g.

 - dynamic loading, runtime code generation, “hot update”, self-modifying code

Setting the scene

• Higher order store means that mutable state, such as the heap, can be used to
store code/commands/procedures

• Languages with higher order store can serve as a foundation to model e.g.

 - dynamic loading, runtime code generation, “hot update”, self-modifying code

• We are interested in logical reasoning for such languages

 - we use separation logic (a variant of Hoare logic)

Setting the scene

• Higher order store means that mutable state, such as the heap, can be used to
store code/commands/procedures

• Languages with higher order store can serve as a foundation to model e.g.

 - dynamic loading, runtime code generation, “hot update”, self-modifying code

• We are interested in logical reasoning for such languages

 - we use separation logic (a variant of Hoare logic)

• Particularly interested in hidden state

Hidden state

• How can we reason about hidden state effectively and soundly?

 How to reason about invocation of a higher order procedure

 when one of the arguments is a procedure with its own state

• Hidden state is really great: it leads to modular programs and modular proofs

 - But it’s also tricky to reason about correctly

A program featuring hidden state
written in a minimal language with higher order store

This program is completely
safe – it cannot crash.

Can we prove this?

A program featuring hidden state
written in a minimal language with higher order store

The ctr cell
is “hidden
state”
in this call

Problem considered in this talk

PROBLEM:

• How can we reason about hidden state effectively and soundly?

• A logical axiom, called the Deep Frame Axiom, has been previously proposed
for reasoning about hidden state (Schwinghammer et al (CSL, 2008))

 - at first glance, appears to be natural and exactly what we need

Problem considered in this talk

PROBLEM:

• How can we reason about hidden state effectively and soundly?

• A logical axiom, called the Deep Frame Axiom, has been previously proposed
for reasoning about hidden state (Schwinghammer et al (CSL, 2008))

 - at first glance, appears to be natural and exactly what we need

• Unfortunately it isn’t sound!

 - we can use it to prove correctness of a crashing program

Problem considered in this talk

PROBLEM:

• How can we reason about hidden state effectively and soundly?

• A logical axiom, called the Deep Frame Axiom, has been previously proposed
for reasoning about hidden state (Schwinghammer et al (CSL, 2008))

 - at first glance, appears to be natural and exactly what we need

• Unfortunately it isn’t sound!

 - we can use it to prove correctness of a crashing program

SOLUTION:

• Propose a sound specification idiom which we can use instead

 - using second order logic (quantification over assertions)

Nested Hoare triples

We can reason about higher order store using a logic with nested triples, based
on Schwinghammer et al, CSL, 2008. For example, consider our code for runIt:

This code can be specified by a Hoare triple:

The code is higher order so pre- and post-conditions contain Hoare triples.

Now we have a mismatch
because the code in runIt
doesn’t know about the
counter cell.

What can we do??

“Deep” framing

We introduce an operator for adding invariants to specifications:

 means, informally, add to every pre- and post-condition
 in P, at all nesting levels.

“Deep” framing

We introduce an operator for adding invariants to specifications:

 means, informally, add to every pre- and post-condition
 in P, at all nesting levels.

E.g.

“Deep” framing

We introduce an operator for adding invariants to specifications:

 means, informally, add to every pre- and post-condition
 in P, at all nesting levels.

E.g.

means

Deep Frame Axiom and Rule

Two mechanisms for adding invariants to specifications were considered by
Schwinghammer et al (CSL, 2008)

Deep Frame Axiom and Rule

Two mechanisms for adding invariants to specifications were considered by
Schwinghammer et al (CSL, 2008)

The Deep Frame Rule can add invariants to a specification

 - but only at the top level of the proof

Deep Frame Axiom and Rule

Two mechanisms for adding invariants to specifications were considered by
Schwinghammer et al (CSL, 2008)

The Deep Frame Rule can add invariants to a specification

 - but only at the top level of the proof

The Deep Frame Axiom is stronger

- can also be used inside pre- and post-conditions of triples

Here is our mismatch again.

Let’s use the Deep Frame
Axiom to add
as an invariant
to the specification for runIt

Now we can reason
about the call and we
are happy

The Deep Frame Axiom is unsound

• We’ve just seen why we want the Deep Frame Axiom

 - unfortunately it is not sound; only the weaker rule version is sound

The Deep Frame Axiom is unsound

• We’ve just seen why we want the Deep Frame Axiom

 - unfortunately it is not sound; only the weaker rule version is sound

• Because we can hide state, when doing a proof we might already have
hidden some state to get the precondition!

 - So in general the code in runIt may have access to heap cells we don’t
know about

The Deep Frame Axiom is unsound

• We’ve just seen why we want the Deep Frame Axiom

 - unfortunately it is not sound; only the weaker rule version is sound

• Because we can hide state, when doing a proof we might already have
hidden some state to get the precondition!

 - So in general the code in runIt may have access to heap cells we don’t
know about

• If the runIt code copies “outside” code into the hidden cells, things can go
wrong:

 - The program will crash

 - But we can still prove it correct using the Deep Frame Axiom

CRASH!

Obviously this is bad –
we seem to need the
Deep Frame Axiom but
it is unsound.

How to resolve the
problem?

Proposed solution

• We’ve seen two implementations for runIt:

 - one where adding invariants in axiom style is safe, another where it is not

Proposed solution

• We’ve seen two implementations for runIt:

 - one where adding invariants in axiom style is safe, another where it is not

• Thus, whether or not it is safe to add invariants must become part of the
specification agreed between the runIt code and its clients.

Proposed solution

• We’ve seen two implementations for runIt:

 - one where adding invariants in axiom style is safe, another where it is not

• Thus, whether or not it is safe to add invariants must become part of the
specification agreed between the runIt code and its clients.

• This can be expressed easily using second order logic:

Proposed solution

• We’ve seen two implementations for runIt:

 - one where adding invariants in axiom style is safe, another where it is not

• Thus, whether or not it is safe to add invariants must become part of the
specification agreed between the runIt code and its clients.

• This can be expressed easily using second order logic:

• With this idiom we can prove the correct program, but not the faulty one

We can easily prove this;
just instantiate X with

when you need to

Remarks

• Commands specified with may still have hidden state

 - and they may still use that hidden state for storing code

Remarks

• Commands specified with may still have hidden state

 - and they may still use that hidden state for storing code

• Copying outside code into hidden state seems to be what is ruled out

 - We would like to be able to be more precise about this

Remarks

• Commands specified with may still have hidden state

 - and they may still use that hidden state for storing code

• Copying outside code into hidden state seems to be what is ruled out

 - We would like to be able to be more precise about this

• In proofs we have done so far, using the specification
didn’t generate much extra work

 - We would like to be more precise about this too

The end

Remarks

E.g. for the implementation of runIt which doesn’t use hidden state, the extra

 comes for free via the DFR:

Absolutely the end

