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Hidden state 

• How can we reason about hidden state effectively and soundly? 

 

  How to reason about invocation of a higher order procedure 

  when one of the arguments is a procedure with its own state 

 

• Hidden state is really great: it leads to modular programs and modular proofs 

 - But it’s also tricky to reason about correctly 



A program featuring hidden state 
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SOLUTION: 

• Propose a sound specification idiom which we can use instead 

 - using second order logic (quantification over assertions) 

 



Nested Hoare triples 

We can reason about higher order store using a logic with nested triples, based 
on Schwinghammer et al, CSL, 2008.  For example, consider our code for  runIt: 

 

 

 

This code can be specified by a Hoare triple: 

 

 

 

 

 

The code is higher order so pre- and post-conditions contain Hoare triples. 



















Now we have a mismatch  
because the code in runIt 
doesn’t know about the 
counter cell. 
 
What can we do?? 
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The Deep Frame Rule can add invariants to a specification 

 - but only at the top level of the proof 

 

The Deep Frame Axiom is stronger 

- can also be used inside pre- and post-conditions of triples 



Here is our mismatch again. 
 
Let’s use the Deep Frame 
Axiom to add 
as an invariant 
to the specification for  runIt 



Now we can reason 
about the call and we 
are happy  
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• Because we can hide state,  when doing a proof we might already have 
hidden some state to get the precondition! 

 -  So in general the code in  runIt  may have access to heap cells we don’t 
know about 

 

• If  the  runIt  code copies “outside” code into the hidden cells, things can go 
wrong: 

 - The program will crash 

 - But we can still prove it correct using the Deep Frame Axiom 



CRASH! 









Obviously this is bad – 
we seem to need the 
Deep Frame Axiom but 
it is unsound. 
 
How to resolve the 
problem? 
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• With this idiom we can prove the correct program, but not the faulty one  

 



We can easily prove this; 
just instantiate  X  with 
 
 
when you need to  
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• In proofs we have done so far,  using the                                         specification 
didn’t generate much extra work 

  - We would like to be more precise about this too 



The end 



Remarks 

E.g. for the implementation of  runIt  which doesn’t use hidden state, the extra 

                                   comes for free via the DFR: 







Absolutely the end 


