
J Autom Reasoning
DOI 10.1007/s10817-014-9319-8

Symbolic Execution Proofs for Higher Order Store
Programs

Bernhard Reus · Nathaniel Charlton · Ben Horsfall

Received: 22 November 2013 / Accepted: 27 November 2014
© Springer Science+Business Media Dordrecht 2014

Abstract Higher order store programs are programs which store, manipulate and invoke
code at runtime. Important examples of higher order store programs include operating sys-
tem kernels which dynamically load and unload kernel modules. Yet conventional Hoare
logics, which provide no means of representing changes to code at runtime, are not appli-
cable to such programs. Recently, however, new logics using nested Hoare triples have
addressed this shortcoming. In this paper we describe, from top to bottom, a sound semi-
automated verification system for higher order store programs. We give a programming
language with higher order store features, define an assertion language with nested triples
for specifying such programs, and provide reasoning rules for proving programs correct.
We then present in full our algorithms for automatically constructing correctness proofs. In
contrast to earlier work, the language also includes ordinary (fixed) procedures and muta-
ble local variables, making it easy to model programs which perform dynamic loading and
other higher order store operations. We give an operational semantics for programs and a
step-indexed interpretation of assertions, and use these to show soundness of our reasoning
rules, which include a deep frame rule which allows more modular proofs. Our automated
reasoning algorithms include a scheme for separation logic based symbolic execution of
programs, and automated provers for solving various kinds of entailment problems. The lat-
ter are presented in the form of sets of derived proof rules which are constrained enough to
be read as a proof search algorithm.

Keywords Program verification · Higher order store · Recursion through the store ·
Separation logic · Automated verification

B. Reus (�) · N. Charlton · B. Horsfall
Department of Informatics, University of Sussex, Brighton, United Kingdom
e-mail: bernhard@sussex.ac.uk

N. Charlton
e-mail: billiejoecharlton@gmail.com

B. Horsfall
e-mail: b.g.horsfall@sussex.ac.uk

mailto:bernhard@sussex.ac.uk
mailto:billiejoecharlton@gmail.com
mailto:b.g.horsfall@sussex.ac.uk

B. Reus et al.

1 Introduction

Separation logic [37] is a Hoare-style logic for reasoning about heap-manipulating pro-
grams, which extends Hoare logic with connectives and rules for local reasoning. Local
reasoning allows much simpler proofs of heap-manipulating programs, such as those work-
ing with linked lists and trees. As a result, the past decade has seen an explosion of interest
in separation logic. Separation logic proofs were initially done by hand, but automated tools
soon followed, beginning with Smallfoot [4]. Smallfoot provided (semi-)automatic reason-
ing about C-like recursive procedures, concentrating on memory safety and simple shape
properties. The key idea behind Smallfoot, which has been reused and refined in later tools
(see e.g. [17, 20, 21, 30]), is that of symbolic execution with separation logic [5].

However, in the original separation logic, and hence all the tools based on it, asser-
tions only allowed one to talk about heaps storing primitive data types such as integers
and Booleans, and the code of the program was assumed to be fixed. In Reynolds’ seminal
paper [37], the treatment of code pointers in separation logic is mentioned as an open prob-
lem. Programs which introduce or modify procedures (or code or commands) on the heap
at runtime were thus left unaddressed. Yet many interesting kinds of programs fall into this
category: “hot update” systems which update code while it runs (e.g. [43]), programs which
use dynamic loading and unloading of code (such as the Linux kernel [24]), and programs
which perform runtime code generation (e.g. [2]). Heaps which contain procedures (or code
or commands) have been called higher order stores.

Reynolds’ open problem has first been addressed by [33] for machine languages and
[36] for a C-like language. After that, following ideas of [26], separation logics with nested
Hoare triples [40–42] have been developed. In these logics, assertions can contain Hoare
triples which describe the behaviour of code stored on the program’s heap allowing one to
reason modularly about higher order store programs.

In this paper we take a natural next step by showing how to combine the symbolic exe-
cution idea, which has proved so effective for ordinary procedural programs, with nested
Hoare triples. This allows us to build a (semi-)automatic verifier for higher order store
programs, which we have named Crowfoot. In doing this, several challenges present them-
selves. Firstly, because assertions now include triples i.e. specifications, we need to create
an automatic prover for entailments between specifications, as well as a prover for entail-
ments between assertions. In existing tools only the latter is needed. Secondly, new symbolic
execution rules are required for the statements which make use of the higher order nature
of the heap; obviously these rules make use of nested triples. Thirdly, when nested triples
are added, one may have both ∀ and ∃ quantifiers appearing at all nesting levels, and these
demand a proper treatment; quantifiers can no longer be sidestepped the way they are in
e.g. [5]. Fourthly, one wishes to support deep framing to allow more modular proofs, which
means one needs to include support for (at least some uses of) the deep framing operators
⊗ and ◦ [40, 41], which do not appear in logics without nested triples.

Running Example. Figure 1 presents an example program that uses stored procedures and
involves a generic memoiser. The command eval [a](e) is used to call stored code, more
precisely it evaluates the content of cell a and if it points to a function it then applies this
function to arguments e. If the number of parameters does not match or no function is stored
at a the program evaluation gets stuck.

The safety and correctness of the program in Fig. 1 can be expressed within our logic
(specifications will be presented in Section 3) and a proof can be found by the proof search
algorithms we implement. The proof is almost automatic, however it requires some hints

Symbolic Execution Proofs for Higher Order Store Programs

Fig. 1 Our running example program. (DeepInv is defined in Fig. 4.)

which are the grey shaded parts in the figure. These are annotations for the verifier and are
not part of the program code. They will be explained in Section 2.3.2.

Our example concerns a recursive implementation fib of the Fibonacci function, which
makes its recursive calls through the store using code stored at address a. Since the “inter-
nal” recursive calls are made via a pointer into the store, we can “hook into” the recursion
and provide a memoisation routine mem, which also caches these internal calls. This kind
of memoisation cannot be implemented for a conventional recursive implementation of the

B. Reus et al.

Fibonacci function. Our example is more challenging than the factorial function which is
typically used [3, 16, 26] to illustrate recursion through the store.

The memoisation procedure mem first looks to see if it can find a cached result for the
given input. If found, then the cached result is given, otherwise the recursive procedure f is
used to compute the result, which is then added to the cache. The caching is achieved with
the help of an association list library (implementation omitted) which is first initialised in
main by the call to load list lib. This results in a set of pointers to procedures that manip-
ulate association lists, which are then passed through to the useFib procedure where the
memoiser is set up and a Fibonacci number calculated.

The procedure useFib first creates a new association list and then stores the fib procedure
on the heap. Next the memoiser is loaded onto the heap which is set up for the loaded fib
procedure and the new association list, along with the pointers to the list library code. By
providing these arguments at the time of storing the procedure on the heap, they are then
fixed by partial application such that running the stored version of mem (by eval [a](a, n))
requires providing just the two remaining arguments. The first is a pointer to itself, which is
passed through to the function being memoised where it is used for the recursive calls, and
the second argument is the input integer.

A short description of this (semi-)automatic verifier and its logic has appeared in [14].
In this article we give an improved and extended presentation, adding significant amount of
detail and some additional features. In detail we additionally provide:

– all the deterministic proof search rules of Crowfoot exactly how they have been
implemented

– all the high-level rules of separation logic for nested triples which are a minor variation
of [41]

– a detailed soundness proof of the logic wrt. high-level core rules
– a short soundness proof of the high-level core rules wrt. a step-indexed model inspired

by [7] and different from [41]. The model is also different from the one sketched in
[14] allowing one to model some features not originally discussed.

– a number of additional proof hint mechanisms that were needed for verification of a
reflective visitor implementation [28].

Structure of this Paper The rest of this article is structured as follows. In Section 2 we intro-
duce a language for (annotated) higher order store programs, and a language of assertions
for reasoning about them. Unlike the language used in [41], our programming language sup-
ports three natural features: fixed recursive procedures, mutable local variables and partial
application. The specification of our running example, the memoiser, is presented in Sec-
tion 3. Section 4 contains the high-level (“core”) rules for reasoning about programs with
higher-order store. These are an adaptation of the rules of [40], made to fit our programming
language. Their soundness is then shown using a model based on step-indexing in Section 5.
This model also allows us to use a mildly simplified rule for recursion through the store.
Our automated proof search algorithms are described in Section 6. We present our methods
in the form of sets of proof rules which are algorithmic in nature; essentially these rules can
be read as a proof search algorithm. We show that these rules are sound by deriving them
from those of Section 4. In Section 7 we briefly discuss related work and Section 8 contains
a short report about our experience with the Crowfoot tool, a verifier based on the symbolic
execution rules presented in this paper. Finally, Section 9 concludes by discussing future
work.

Symbolic Execution Proofs for Higher Order Store Programs

2 Programming Language and Assertion Language

2.1 Programming Language Featuring Higher Order Store

We work with an imperative language with recursive procedures, call-by-value parameter
passing, and dynamic memory allocation via a mutable heap supporting address arithmetic
and, crucially, higher order store operations. Procedure bodies are program statements,
whose abstract syntax is given in Fig. 2.

Square brackets are used for dereferencing addresses, so x := [a] reads the content at
address a into the variable x, whereas [a] := x stores the value of x at address a in the heap.

For using the higher-order store, there are two important statement forms. Statements
like [a] := proc F(x,) are used to load code onto the heap, optionally instantiating some
of the parameters at load-time. In this case, the fixed procedure named F is stored at address
a. F has two parameters, the first of which is instantiated with x (partial application). The
stored procedure will then have arity 1. We use an underscore for those parameters that are
to be given at invocation time. As our syntax uses to represent arguments not yet “filled
in”, we can supply any subset of the arguments at load-time, not just initial segments. The
other important statement is eval [eA](t1, . . . , tn), which lets us run the code stored in cell
eA with actual parameters t1, . . . , tn.

Note that the syntax is slightly restrictive, for example there is no ÷ operator, procedure
arguments can only be variables, and the address expressions limit pointer arithmetic to two
simple cases of addition. However, these issues are orthogonal to the focus of this research,
which is to support reasoning for higher-order store programs, and the verification system
presented should be considered a research prototype.

2.2 Assertion Language

The syntax for the assertion language used in our automatic proof search algorithms can be
seen in Fig. 3. We extend the logic [40] which already uses separation logic primitives: pred-
icate emp for the empty heap, e1 �→ e2 for a one cell heaplet with address e1 and its content
e2, and � for adding two heaplets with disjoint addresses. Our extended language allows
nested triples to appear in assertions, such that we can reason about stored procedures. For
example, the assertion

x �→ ∀a. {a �→ } · (a) {a �→ }

Fig. 2 Abstract syntax for program statements

B. Reus et al.

Fig. 3 Abstract syntax for the assertion language

states that the content at address x is a procedure of arity 1 which, for all arguments a,
satisfies the given Hoare triple {a �→ } · {a �→ }. A further addition to the logic of [40]
are the introduction of set and element expressions. Element expressions eE are one of the
following: either the usual (integer) expressions eV , or tuples of elements expressions, eg.
(e1, e2, e3) or set expressions. Set expressions eS are either: a set variable α, the union of
two set expressions, a singleton element set (thus sets can be nested), the n-th projection of a
set expression, projn(eS), or the empty set ∅. Projections map sets of tuples to sets by lifting
the standard projection map πn to sets in the canonical way, for instance proj2({(e1, e2, e3)}
equals {e2}.

We could easily extend the available operations and relations on sets, adding for example
intersections or inequalities of sets.

Figure 3 explains at the syntax for atomic formula A. The first case describes a heaplet
(ie. a single cell heap). The single cell has address eA pointing to a list of contiguous cells
(in concrete syntax separated by commas) which are specified using one of the follow-
ing content specifiers: an expression eV describing some integer content, an underscore
specifying that any content will suffice, or a behavioural specification B stipulating that
the cell contains a procedure satisfying Hoare triple B that also indicates the number and
kind of arguments1. Other ways to obtain atomic formulae are usages of predicates P with
integer and set arguments separated by a comma, comparison between (integer) expres-
sions, and logical expressions involving sets. The latter comprise elementhood test, negated
elementhood test, subset relationship between sets, and equality between sets.

Spatial conjunctions allow one to describe larger heaps using repeatedly A � . . ., termi-
nating this process using the empty heap predicate emp. An assertion then consists of a
disjunction of existentially quantified spatial conjunctions.

A key feature of the assertion language in Fig. 3 is that only certain kinds of formulae
are allowed; the use of logical connectives and quantifiers must follow a particular pattern.
Restricting the assertion language like this is a standard technique when building formal
verification tools: it increases the degree of automation one can achieve, at the expense of
the expressiveness of the specifications one can consider. With the restrictions we adopt in
Fig. 3 (which are similar to those used in Smallfoot [4], for example) we are able to program
an effective automatic entailment prover in a fairly natural way. We do not include spatial
implication, i.e.. the so-called “magic wand”. The main reason is simplicity as first-order
separation logic with full usage of magic wand is undecidable. Techniques to circumvent

1Recall that arguments t can be a variable x or constant c.

Symbolic Execution Proofs for Higher Order Store Programs

this problem in practice and to support magic wand in (semi-)automated proofs have been
suggested by [9, 39] and could be also used to extend the Crowfoot logic. A sound and
complete proof system for separation logic with magic wand has been recently presented in
[31] which “may also serve as practical foundation” (loc.cit.) for verifiers.

A formula is called pure if it does not use �→ and contains either no predicate symbols
P, or only predicate symbols defined by pure formulae. Thus pure formulae do not refer to
the heap. In Section 4.2, we give a slightly non-standard interpretation to the pure formulae,
additionally requiring the heap to be empty; e.g. x = y holds exactly when x and y are
equal and the heap is empty. We do this (following again [4]) so that our restricted assertion
language needs only one kind of conjunction, �; it needs not include ∧.

2.3 Annotated Programs

Annotated programs are written using the programming and assertion languages given in
the previous sub-sections.

2.3.1 Declarations

An annotated program is a sequence of declarations, which can be of the following kinds:

– Constant definition: const c or const c = n

– Abstract predicate declaration: forall P(∗; ∗) or forall pure P(∗; ∗)
Predicates declared as abstract may be used in specifications, but have no definition

(so they cannot be folded or unfolded). Thus a successful proof shows that the pro-
gram works for any definition of such predicates. This feature provides only a “hint” of
second-order logic: universal quantification over predicates is possible if the scope is
the entire input file. Abstract predicates can optionally be declared pure, which means
they can be duplicated and discarded in assertions. This would not be sound for general
abstract predicates.

– Inductive/recursive predicate declaration: recdef P(x∗;α∗) := P

The following, for example, declares a linked list segment predicate that appears
frequently in the separation logic literature:

recdef Lseg(x, y;α) := x = y ∗ α = ∅
∨ ∃n, d, β. x �→ d, n ∗ Lseg(n, y;β) ∗ α = {(d, x)} ∪ β

(1)
Predicates are implicitly regarded as pure if their definition does not refer to the heap
(as defined in Section 2.2). One can also declare specifications designed for reasoning
about recursion through the store, such as

recdef R(x) := x �→ ∀a. {R(x) � y �→ } · (a) {R(x) � y �→ }

The importance of such (mixed variant) recursive predicate definitions will be discussed
in detail when the proof rule is discussed that deals with recursion through the store.

The well-definedness of a recursively defined predicate, ie. whether it semantically
exists, is not checked. To warrant maximum flexibility, our tool does not guarantee this
and leaves the existence proof to the user. Thus, it is the user’s responsibility to write

B. Reus et al.

recursive predicate declarations that are actually meaningful.2 This is similar in spirit
to the way admissibility was handled in LCF [23] where admissibility itself had to be
proved outside the LCF logic.

– Declaration using the invariant extension operator, discussed in more detail in Sec-
tion 2.4:

recdef S(x) := R(y) ◦�

where y ⊆ x and fv(�) ⊆ x. This means in particular that � must not introduce
new free variables, however it can introduce new existentially quantified variables. The
(deep) invariant extension operator ◦, presented in [40], has the effect of deeply framing
an invariant onto the predicate. This involves adding the invariant � to the definition of
R, and further adding the assertion as an invariant to all nested specifications. In short,
S(x) = (R(y)⊗�) � �.

– (Abstract) procedure declaration:

proc abstract F(x∗) proc F(x∗)
∀ [x|α]∗. ∀ [x|α]∗.
pre : P pre : P
post : Q post : Q

{ locals x∗;C }
This declares a (possibly abstract) procedure, and associates with it a specification con-

sisting of a pre- and postcondition. Formal parameters are taken as implicitly universally
quantified3. We disallow assignments to formal parameters in the procedure body, so that
these have the same meaning in the postcondition as in the precondition. Abstract pro-
cedures have a specification but no body, and are useful when we wish to model library
procedures for which we know the behaviour but do not know or do not care about the
source code.

2.3.2 Hints

To assist the prover in verifying a program, certain hints can be provided. Firstly, while-
loops are annotated with an invariant:

statement C ::= . . . | while eV �� eV P do C

The next kind are annotations to some of the atomic statements, defined in Section 2.1.

atomic statement At ::= . . . | call F(t∗) inst-hints∗ deepframe?

eval [eA](t∗) inst-hints∗

[eA] := F([t |]∗) deepframe?

inst-hints ::= x = eV | α = eS

deepframe ::= deepframe �

2We could implement a semantic checker that verifies that the declaration is actually an instance of a certain
pattern that guarantees existence but decided against it for maximum flexibility as our verifier is a research
tool.
3Only other variables thus need to be explicitly quantified by the user.

Symbolic Execution Proofs for Higher Order Store Programs

The ‘inst-hints’ annotation, used with the call and eval statements, provides optional hints
on how to instantiate quantified variables over the relevant specification. For example if the
specification of the procedure we are going to eval is ∀a, b, c. {P } · (a) {Q} we might use
hint “b = e” which will instantiate b with expression e. With no hints for the variable c, the
system will attempt to compute a suitable instantiation. The optional deepframe annotation,
which consists of the keyword deepframe followed by an assertion disjunct, allows deep
framing of an invariant to take place on the triple being used or stored onto the heap, see
Section 2.4.

The final kind of annotations are the ghost statements, added to the atomic statements:

atomic statement At ::= . . . | ghost G

ghost statement G ::= fold P((x|?)∗; (α|?)∗) inst-hints?

| unfold P((x|?)∗; (α|?)∗)
| split P x ((eV |?)+)| join P x

These annotations, interspersed with program statements in the procedure bodies, tell the
verifier when it is necessary to fold or unfold the user-defined predicates. For example, a
standard linked-list definition would need to be unfolded if we want to examine the contents,
or traverse the list. The split and join statements are special cases that are explained in the
next section.

2.3.3 List Segments

Linked lists are a widely used heap data structure so it is important to be able to reason
about list segments. For greater flexibility we work with a general pattern of list segment
definitions which can be syntactically recognised. For all such definitions an axiom for
joining list segments will be available, and for definitions which are splittable (explained
shortly) an axiom for splitting list segments is additionally available. These can be used via
ghost statements to perform inductive list reasoning in proofs.

Let

LsegDefs(n, v, [C1, . . . ,CM], [A1, . . . , AN], [E1, . . . , Ek])
be the set consisting of the following (syntactic) predicate definitions:

recdef P(s, t;α) := s = t � α = ∅ ∨

⎛
⎜⎜⎜⎜⎝

∃n, v, β .

s �→ C1, . . . ,CM, n

� A1 � · · · � AN

� P(n, t, β)

� α = {(E1, . . . , Ek)} ∪ β

⎞
⎟⎟⎟⎟⎠

where:

– C1, . . . ,CM are content specifiers whose free variables come from v.
– A1, . . . , AN are atomic formulae whose free variables come from v.
– E1, . . . , Ek are value expressions whose free variables come from v, s.
– All variables appearing are distinct.

A list segment predicate as above is called splittable if one of E1, . . . , Ek is either the
variable s (which is used as the address of the first list node in the segment), or a variable
v ∈ v such that one of A1, . . . , AN has the form v �→ C ′ . Having one of these constraints
ensures that each element in the abstract set α can be uniquely identified.

B. Reus et al.

Let us demonstrate this with the list segment predicate we saw earlier (1). That def-
inition is in LsegDefs(n, d, [d], [], [d, x]) and is splittable. Thus the ghost statement
“split Lseg a (x, y)” is available, and will split a list segment of shape Lseg, which starts at
address a, to break out the element (x, y). Thus, the list is split into three parts: the list seg-
ment of all elements preceding element (x, y), the element (x, y), and the list segment of the
succeeding elements. Statement “ghost join Lseg e” is for concatenating two such segments,
taking Lseg(e1, e, eα) � Lseg(e, e2, eβ) and producing a joint list Lseg(e1, e2, eα ∪ eβ). The
corresponding deterministic proof rules (GHOSTJOIN,GHOSTSPLIT) are in Appendix B.2.

2.4 Deep Framing

The deep frame rule [8, 40] allows one to infer {P }C {Q} ⊗ I from {P }C {Q}, where ⊗
is a deep framing operator. Intuitively this operator adds the invariant I not just to the pre-
and postconditions of the triple {P }C {Q}, but also to all triples nested inside P and Q, at
all levels. For example,

∀ x. {a �→ {emp} · () {emp}} · (x) {emp} ⊗ y �→
⇔ ∀ x. {x �→ {y �→ } · () {y �→ } � y �→ } · (x) {y �→ }

as can be proved using the distribution laws for ⊗ found in [40]. This is useful for mod-
ular reasoning as explained in [8] and further demonstrated by our running example. The
operator ◦ from [40], used in recdef definitions, is a convenient shorthand: � ◦ I :=
(�⊗ I) � I .

The annotation deepframe I prompts the verifier to add the invariant I deeply onto the
triple for a procedure; this can be done when a procedure is called with call, or when a
procedure is first written to the heap. Note that deep framing is not available for the eval
statement, as this would be unsound [15].

Our proof rules implement deep framing using the ⊗ distribution laws from [40]. In
Section 5 we will show how to distribute ⊗ through recursively defined predicates. In our
verification system we currently support this distribution operator only for specific recursive
definitions of the form

R(x) := n

�
i=1

vi �→ ∀ai . {R(e) � Fi} · (pi) {R(e) � Gi} � H

where: e may contain variables ai as well as x, and each Fi , each Gi and H are all left
zeroes of ⊗ (i.e. informally they do not contain any nested triples). This form is sufficient
to cover all the cases we have encountered so far.

3 Specification of the Running Example

The specifications of the procedures in Fig. 1 can be found in Fig. 5. The auxiliary predicate
definitions are given in Fig. 4.

The fib Implementation Let us first examine how to specify the fib code. Predicate
$Rel(n, m) says that n and m are appropriately related for the function being computed; in
this case we define $Rel(n,m) to mean that m is the nth Fibonacci number. But this def-
inition is only used inside the proof of fib, and not when proving the generic components
such as mem so the proof is modular. To emphasise this we could verify the memoiser
with a generic specification $Rel using declaration forall pure $Rel(n,m). Currently there

Symbolic Execution Proofs for Higher Order Store Programs

Fig. 4 User-defined predicates used to specify and verify our running example

Fig. 5 Procedure specifications for the memoiser example

B. Reus et al.

is no means of making that “forall pure” have a scope other than global (wrt. the input file),
so one cannot easily prove that the memoiser satisfies a generic specification and verify a
particular client in the same file. But one can do both separately.

Suppose we try to write a precondition for the fib code. This precondition must mention
all the heap resources needed by fib. Firstly a cell res �→ is needed into which we write
the result (recall that res is a global constant). Secondly, since fib makes its recursive call
through the heap at the address given by parameter a, the precondition must include a �→ B

where B is a nested triple. In particular, B must state that the code stored at a has the same
kind of behaviour as we specify for the fib procedure. But we do not have fib’s specification
yet, because we are still trying to formulate its precondition! It appears that we need a
specification which depends on itself. Using the recdef keyword we can declare such a
recursively defined specification, namely the $RecFn predicate, which appears nested inside
its own definition.

The Memoiser The memoiser implementation uses an association list data structure, at
address al, to cache the input-output pairs for the function being memoised. An associa-
tion list with a header cell, starting at address al and containing values for a set κ of keys,
is described by $AssocListH(al; κ). Such lists are manipulated via four library routines,
pointers to which are passed in the arguments lookupL, addL, createL, disposeL. Argument
f to procedure mem is a pointer to the code of the function being memoised; the memoi-
ser must call this code when the required data is not found in the cache. The arguments
lookupL, addL, createL, disposeL, al, f are fixed by partial application when the memoiser
is first loaded onto the heap. This leaves a two-argument procedure: the first argument a is
passed straight through to the function being memoised, and the second argument n is the
input at which to apply the function.

The memoiser is designed to be placed into mutual recursion with fib, or similar
code for computing other functions. During computations the fib code and the memoi-
ser then invoke each other in a “zig-zag” mutual recursion. The “ensemble” of these
two functions stored on the heap and able to invoke each other can be described by
$S(a, f, al, lookupL, addL, createL, disposeL) which, as will be shown later by Lemma 7
(Section 6), is equivalent to:

∃κ. a �→ RecFnMem(·) � f �→ RecFnMem(·)
� $AssocListH(al; κ) � $ListLibWeak(lookupL, addL, createL, disposeL)

where RecFnMem(·) is shorthand for

∀a, n.

{
$S(a, f, al, lookupL, addL, createL, disposeL) � res �→ }

·(a, n){ ∃v. $S(a, f, al, lookupL, addL, createL, disposeL) � res �→ v � $Rel(n, v)
}

Intuitively RecFnMem describes code which computes a function as specified by $Rel,
provided the heap contains the “ensemble” of function and memoiser code as described
above.

The Main Program The main procedure first calls load list lib to load the association list
library routines onto the heap. Then, main invokes useFib which loads the fib code and the
memoiser, places them into mutual recursion, and finally uses this to compute the 31337th
Fibonacci number.

In useFib we see the crucial role of the deep frame rule. We have specified (and therefore
will verify) fib for the case where it is placed in recursion only with itself, using $RecFn.

Symbolic Execution Proofs for Higher Order Store Programs

Hence, if the deepframe annotation were not used in useFib, the symbolic heap after the
statement [f] := proc fib(,) would contain

f �→ ∀a, n.
{
$RecFn(a) � res �→ } · (a, n)

{∃v. $RecFn(a) � res �→ v � $Rel(n, v)
}

However the annotation deepframe DeepInv triggers the application of −⊗ DeepInv to the
above triple, resulting in RecFnMem(·). In this way, we have used the deep frame rule to
derive another specification for the fib code, which describes how that code works in mutual
recursion with a memoiser. We did not need to respecify or reprove fib.

The List Library The memoiser depends only on relatively weak properties of the associa-
tion list library; a library with these properties is specified by the predicate $ListLibWeak.
But the list library is specified with a stronger specification $ListLibStrong so that it can
also be used with other clients which need additional guarantees. Specifications for three of
the routines are omitted in Fig. 4, but with the remaining “add” routine one can see a dif-
ference. In order to compute the correct function, the memoiser does not care whether the
(key, value) pair is actually added to the list or not, as long as whatever pairs are in the list
afterwards are suitably related by $Rel. But other clients of the list library will certainly care
about this.

Our verification will go through because our rules for proving entailments are able to
show

$ListLibStrong(lookupL, addL, createL, disposeL)

⇒ $ListLibWeak(lookupL, addL, createL, disposeL)
(2)

as we shall discuss in Section 6.5. Having such entailments proved automatically facilitates
reasoning when one is “plugging together” different pieces of code.

4 A “Core” Hoare Logic for Higher-Order Store

In this section we present and discuss the Hoare logic with respect to which our ver-
ification system is sound. We refer to those rules as the “core” rules. These rules are
non-deterministic and not particularly suitable for automated proof search but they give a
high-level logic for higher-order store. In Section 6 we will discuss judgements and rules
for automated proof search and we prove that these rules are sound w.r.t. the “core” rules
presented in this section. Note that the assertion language of this “high-level (core)” logic is
richer than the assertion language of our verifier. For instance, there are no syntactic restric-
tions about quantifiers in assertions, conjunction and implication between assertions yields
assertions, and true is an assertion. Similarly, arguments of procedures can be arbitrary
expressions.

4.1 Rules for Generating Verification Conditions (VCs)

Because programs use mutually recursive fixed procedures, the first rule to apply is a ver-
sion of the well-knkown recursive procedure rule [25], the premise of which generates the
verification conditions for the given program. It basically says that in order to prove a pro-
cedure correct wrt. its pre- and postcondition, we have to prove its body correct, assuming
that recursive calls of the procedure already meet the specification.

Let F1, . . . ,Fn be the names of the concrete procedures declared in the program with
bodies body(Fi) to meet specifications {pre(Fi)}Fi (params(Fi)) {post(Fi)} and let us

B. Reus et al.

abbreviate the context of these n triple specifications 	F . Then the rule for the correctness
of those specifications with respect to the procedure declarations is as follows:

RECURSIVEPROCEDURES

∀j ∈ {1, . . . , n}. (
;	A, 	F �� {pre(Fj)
}

body(Fj)
{
post(Fj)

})

;	A �� {pre(Fi)}Fi (params(Fi)) {post(Fi)} i ∈ {1, . . . , n}

where the judgement
;	 �� {Pi}Ci {Qi} expresses that Hoare triple {Pi}Ci {Qi} is deriv-
able assuming the predicate definitions
, containing equivalences P(x) ⇔ Q which give
meaning to the predicates, and procedure interface specifications 	. In addition to the con-
text 	F of triples for declared procedures we need a context 	A to account for any abstract
procedures which of course do not have bodies. Variables appearing in these triples need to
be treated as universally quantified around the triple (see semantics in Section 5).

4.2 Rules for Proving VCs

If we have n non-abstract procedures then the rule (RECURSIVEPROCEDURES) generates n

verification conditions. Each VC has the form of a Hoare triple in context
;	��{P }C {Q},
where C is a concrete command, which must be proved with respect to some information
about user-defined predicates in
 and declared procedures in 	. To prove the verification
conditions we basically use a version of the logic in [40] with some changes that we shall
shortly explain.

The rules in [40] enrich Separation Logic with rules for higher-order store. However, the
programming language used in loc. cit. is more restricted in that it lacks the parameter pass-
ing, fixed procedures and mutable local variables available in the language we use here. In
Fig. 6, we list the syntax-driven rules. The full set of rules can be found in the Appendix A.
We discuss their soundness in Section 5 and use them to prove soundness of the rather
involved deterministic rules in Section 6 that implement the proof search.

Variable Naming Conventions Throughout the paper we will use the following variable
names in rules to distinguish their kinds: name x usually denotes a program (and thus an
integer) variable (or as list of variables x); for parameter lists of functions usually p is in use
which also denotes a list of integer variables. For list segments, s and t are used as additional
integer variables. In the core logic we also use k typically as a variable representing (the
code of) a stored procedure4. Names a, b, u, v,w and y (or as lists of variables a etc.) denote
either integer or set variables.

Expression Naming Conventions Similarly for expressions that can denote either sets or
integers the letter e (or e for lists of such expressions) is used (also E at times). The names
eA, eV and eS denote just address, integer value and set expressions, respectively. For set
expressions we also use sometimes eα or eβ (see the rules on list segments in Section 2.3.3).
All expressions can appear with the usual extra decorations, so we may use e′, e1 or ê or
even e′1 or ê1 in cases where several expressions appear in one rule.

Substitution Notation Convention In reasoning rules we will write e[x\t] for the substitu-
tion of variable x in term e by a term t .

4In the implemented low level logic we never use such variables explicitly.

Symbolic Execution Proofs for Higher Order Store Programs

Fig. 6 Syntax-driven rules for Hoare-triples

Explanation of Fig. 6 The rules are mostly as found in other separation logic systems,
providing variable assignment, heap allocation, deallocation and address dereferencing. The
interesting rules here are those that utilise the higher-order store: storing code on the heap,
and eval. Three notable rules are discussed below.

Rule (CALL) is for reasoning about declared procedures. It is worth pointing out that
the specification of the procedure is taken from the specification context and that parameter
instantiation is done implicitly in the hypothesis. The hypothesis consists of an entailment
between the declared specification of the procedure and its actual invocation. The universal
quantification of free variables in procedure specifications becomes visible here. The entail-
ment judgement is discussed below. The symbolic heap before the invocation P is likely to
be larger than the procedure’s footprint A which is dealt with as usual by the frame rule.

Rule (EVAL) is for reasoning about stored procedures5 and needs to deal with recursion
through the store. The invoked procedure is stored on the heap at address eA and is supposed
to fulfil the triple {P } · (eV) {Q} where P is the precondition of the eval command. Note

5We use a version of this rule that is different from the one in [14, 40] as it reflects more closely the rule used
for proof search.

B. Reus et al.

that there are no universally quantified variables around this (nested) triple as parameter
instantiation is done implicitly in the hypothesis like for the (CALL) rule.

Rule (STOREPROC) allows the loading of a fixed procedure from the context 	 into a
single cell on the heap. The rule is complicated by the ability to use partial application,
requiring some special handling of the ∀-quantified variables and the parameters. Essen-
tially, the rule states that any argument provided in t, say the i-th such argument ti , that
is not the underscore, replaces any occurrences of the i-th formal parameter in the code’s
specification. That parameter is then dropped from the parameter list, and also from the ∀-
quantified variables such that it is bound outside the nested-triple. Any argument provided
in t, say the k-th such argument tk , that equals the underscore implies that the k-th argument
of the original function remains an argument in the resulting partially applied function. The
addition of y to the ∀-variables ensures that no other variables used in the specification will
be captured.

Rules for entailments between assertions. The judgement for entailments between asser-
tions is

 �� P ⇒ Q

where
 is the set of predicate definitions which give meaning to predicates in assertions
P and Q. We will often drop the
 annotation when it is irrelevant or obvious from the
context.

Besides the usual basic properties of first order logic with equality, we use the rules as
outlined in Appendix A.2 divided up in three categories. The first group describes the usual
properties of Separation Logic connectives. The second is about the usual distribution of the
tensor ⊗ used to frame on assertions “deeply” (see [40]), and the third is about nested triple
entailments. Note that in our logic the first group also contains the axioms

�-SPLITPURELEFT �-SPLITPURERIGHT

A � � ⇒ A if � is pure A ∧ (� � true) ⇒ A � � if � is pure

These axioms are needed as in the assertion language of the verifier we do not use ∧ for
adding pure assertions but rather �.6 The following axiom states that pure facts can be
duplicated

�-IDEMPURE

� ⇒ � � � if� is pure

and can be inferred from (�-SPLITPURERIGHT) and the fact that � ⇒ � � true (which
follows from the Separation Logic axioms).

The following rule will be used later to prove that invariant extension operator ⊗ dis-
tributes over recursive predicates (Lemma 7). It states that each recursive definition of a
predicate has a unique solution. In order for this to hold we need to ensure that R in the rule
below gives rise to a unique solution. This is not possible within the logic of the tool but left
as external proof-obligation

RUNIQUE

∀y. (R[X\P])(y) ⇔ P(y)∀y. (R[X\Q])(y) ⇔ Q(y)

∀y. P (y) ⇔ Q(y)
R admits a unique solution

6Semantically this means that a pure assertion � will only hold in the empty heap. Therefore � will not hold
in the general sense (ie. for all heaps) but � � true will.

Symbolic Execution Proofs for Higher Order Store Programs

where R is a formula denoting an assertion, with a free predicate variable X used with the
appropriate arity and admits a unique solution. This is the case, for instance, if we R matches
the pattern as described in [16] (so in particular it cannot be X itself).

Note that with the help of ∃-Introduction on the left hand side of the implication and
(CONSEQUENCE) one can derive (SKOLEM). Both are needed to eliminate existentially
quantified variables. Both can be found in Fig. 7.

For the sake of the proof search rules later, we now introduce two useful functions,
purify(−) and closure(−), which transform spatial conjunctions and return spatial conjunc-
tions. The function application purify(A1 � · · · � An) returns the spatial conjunction of just
those conjuncts Ai that are pure. The application closure(�) returns � conjoined with some
extra pure facts which are already implicit in the spatial parts of �. For example if the spa-
tial parts are x �→ � y �→ 0 the pure constraints x �= 0, y �= 0 and x �= y are added. These
functions are designed to satisfy the following characteristic properties which we will add
to the list of axioms:

PURIFY CLOSURE

� ⇔ purify(�) � � � ⇔ closure(�)

Due to the syntactic nature of the functions, the above axioms can be shown by simple
induction on the structure of � using the laws of Separation Logic.

Rules for inductive list segment predicates. A limited form of inductive reasoning for list
segments is available by means of the following two axioms:

JOIN

recdef L(s, t;α) := P ∈ LsegDefn(n, v, [C1, . . . ,CM], [A1, . . . , AN], [E1, . . . , Ek])

, (L(s, t;α) ⇔ P) �� L(e1, e, eα) � L(e, e2; eβ) ⇒ L(e1, e2; eα ∪ eβ)

SPLIT

recdef L(s, t;α) := P ∈ LsegDefn(n, v, [C1, . . . ,CM], [A1, . . . , AN], [E1, . . . , Ek])

, (L(s, t;α) ⇔ P) �� (e1, . . . , ek) ∈ êγ � L(ê1, ê2, êγ) ⇒

∃s, n, v, α, β.

⎛
⎜⎜⎜⎜⎜⎜⎝

L(ê1, s;α)

� s �→ C1, . . . ,CM, n

�A1 � · · · � AN

� L(n, ê2, β)

� êγ = α ∪ {(e1, . . . , ek)} ∪ β

�E1 = e1 � · · · � Ek = ek

⎞
⎟⎟⎟⎟⎟⎟⎠

Fig. 7 Rules for entailment between behavioural specifications

B. Reus et al.

Rules for entailments between triples about procedures. Since our logic uses nested triples,
entailment becomes more complicated and we need to prove entailments between such
triples that talk about the behaviour of procedures. The rules can be found in Fig. 7.

5 Soundness of the Logic Above

To show soundness of the rules above we adopt and adapt a model and proofs that have been
presented in [7].

We will recapitulate the techniques of this “hybrid” model that uses operational seman-
tics and step-indexing but also denotational semantics to construct the type of Kripke-worlds
used for modelling the deep frame rule. There might be other ways to construct models for
our language but the model presented has various advantages, including notably that it can
be easily extended to include the anti-frame rule [34, 42] for future extensions of our logic.
The rules in Section 6 that do the automatic proof search are then shown sound relative to the
rules above. The main differences between the rules presented here and the ones in [40] are
the use of recursively definable procedures with (integer) parameters and local variables7

and the use of those procedures as code expressions (instead of quoted code) which allows
for partial application at the point of heap update. The main feature of the presented model is
that assertions are step-indexed predicates on heaps further indexed by worlds representing
the (specification) invariants that can be framed on to allow for deep framing.

5.1 Operational Semantics of Programming Language

We define a small-step operational semantics as defined in Fig. 8. A configuration (C, s, h)

of the semantics consists of an open command C, a stack of variable environments s ∈
Stack, and a heap h ∈ Heap. For stacks of environments s · η refers to a stack with top-
most environment η and ∅ denotes the empty stack. All components of a configuration may
change during execution. In order to deal with procedure calls there is also a constant envi-
ronment for procedure declarations γ that is not included in the configuration as it is fixed
and will not change. The reduction relation however carries γ as superscript to indicate the
dependency.

We next define the semantic domains used in configurations, that is heaps, variable
environments and procedure environments: First, the domain of heaps is defined as

Heap = N>0 ⇀fin Z

ie. partial maps from strictly positive8 natural numbers (the addresses) to integers that have
finite domain. Therefore, heaps store only integers which has the advantage that they are
“flat” and so do not need to be defined as recursive types containing objects of higher-order,
thus raising problems w.r.t. admissibility of predicates on heaps. Despite being technically
“flat” they still are “higher-order” in spirit as we store procedures in them via a simple
encoding � �. As usual, the empty heap is abbreviated e and there is a partial binary opera-
tion h1 ·h2 that adjoins two heaps h1 and h2 if h1#h2 which abbreviates that h1 and h2 have
disjoint domains, ie. dom(h)1 ∩ dom(h)2 = ∅.

7In our language the syntax is slightly different from loc.cit. as we declare all local variables at the beginning
of procedures instead of using the let. . . in. . . syntax and the local variables can be updated.
8The address 0 denotes the nil pointer.

Symbolic Execution Proofs for Higher Order Store Programs

Fig. 8 Operational semantics of our programming language. Here �� ∈ {=, �=,<,≤}

Variable environments are defined as total maps from variable names to integer values.

Env = Var → Z

Variable names include program variable names as well as auxiliary variable names used to
express specifications. One can only quantify over auxiliary variables. There is an update
operation

η[x �→ e](y) =
{

e if x = y

η(y) otherwise

Using total maps allows us to ignore variable declarations in the semantics. This means
our failure avoiding semantics of Hoare triples will not be able to guarantee that programs
don’t use undeclared variables. The front-end of our verifier will only accept program and
specifications where variables are correctly declared.

B. Reus et al.

Finally, a procedure environment γ maps procedure names F to declarations
proc (x){locals y;C} in syntactic form.

The operational semantics is a relation that relates two configurations and a program.
A configuration consists of a stack of environments and a heap. A final configuration is
a normal configuration or a special aborting configuration abort. This special (terminal)
configuration is reached if a memory fault or any kind of runtime error occurs, for instance
if for a procedure call the actual argument number does not match the arity of the procedure.
The rules for the non aborting cases in the operational semantics are given in Fig. 8; the
aborting cases can be found in Fig. 9.

In addition to the usual variable environment η that maps variables to integers, we need
a stack of such environments as we use a language with procedure blocks that have local
variables. The procedure environment γ that maps procedure names to their definitions
is used for interpreting call statements by looking up the corresponding procedure in the
environment. Again, if the arguments do not match the procedure’s arity, we abort. For
storing procedures we need to perform partial application. Thus we define the operation

papply (proc (x){locals y;C}) (t1, . . . , tn) = proc(x|U){locals y;C[x|I\U\tI\U]}

where x = (xi)i∈I , U = {i ∈ I | ti = } and x|X = (xi)i∈I∩X . This operation substitutes
those actual parameters ti of t that are not for the matching formal parameters xi . For
those tj = the formal parameter xj is left alone such that the resulting procedure has
arity |U |. Note that because we have outlawed assignments to formal parameters inside a
procedure body, this substitution produces only well-formed statements and cannot create
“statements” like 3 := 4.

Let us define Safeγ
n to be the set of configurations in the operational semantics that are

“safe” for n reduction steps, meaning the set of configurations that do not reduce to abort

Fig. 9 Abort cases of the operational semantics of our programming language

Symbolic Execution Proofs for Higher Order Store Programs

in n or fewer steps. Defining further �γ

k to be the restriction of the operational semantics
with fixed procedure environment γ to k-steps, we can explicitly write

Safeγ
n = {� ∈ Config | ¬∃k ≤ n.� �γ

k abort}

5.2 Semantics of Assertions Including Triples

Again, we follow the ideas of [7] and adapt and extend them according to our language. The
first main idea here is to use step-indexed predicates. So let UPred(H) (for any H) be the
set of subsets of N×H that are downwards closed in the index part (first component):

{p ⊆ N×H | ∀(k, h) ∈ p.∀j ≤ k. (j, h) ∈ p}.
For H we pick the ingredients we need to interpret assertions so

H = Env× SetEnv× Heap

where SetEnv is the domain of environments that map auxiliary set variables (α) to sets of
“element values”. Element values can be integers, but also tuples of element values and sets
of element values, ie.

Set = P(Elem) Elem = Z+ Tuple+ Set Tuple =
∑
n

(Elem)n

To equip UPred(H) with a distance function we first define a restriction operator p[n]
for any p ∈ UPred(H) as follows:

p[n] := {(k, v) ∈ p | k < n}
So by definition for all predicates p and q we obtain p[0] = ∅ = q[0]. Now we can define a
distance function for UPred(H) as follows

δ(p, q) := inf{2−n | p[n] = q[n]}
which by the above observation is bounded by 1. That it is a distance map with the right
properties can be shown easily. For the ultrametric version of the triangular inequality one
needs the property

(p[n])[m] = p[min(n,m)]
Let CBUltne denote the category of complete 1-bounded non-empty ultra metric spaces

which is used to interpret predicates of our logic.
For two elements e and e′ ∈ A ∈ CBUltne we write e

n= e′ for δ(e, e′) = 2−n.
As a consequence UPred(H) ∈ CBUltne, i.e. UPred(H) is a complete, 1-bounded ultra-

metric space; for a proof of this see [7]. Using further results cited in loc.cit. [Theorem 2.1]
we obtain a unique W ∈ CBUltne satisfying

W ∼= 1
2 (W → UPred(H)) . (3)

We define Pred = 1
2 (W → UPred(H)) so we can denote the isomorphism from (3)

ι : Pred → W (4)

and we will refer to this ι frequently in this chapter. Assertions are to be modelled as ele-
ments of Pred. The “shrinking factor” 1

2 for the metric automatically turns the function
space of non-expansive maps between CBUltnes into a space of only contractive maps, for
which then a solution of the recursive (3) exists up to isomorphism [38].

The set Pred is ordered pointwise:

p ≤ q ⇐⇒ ∀w ∈ W.p(w) ⊆ q(w)

B. Reus et al.

As explained in the extended version of [7] we can show that Pred is a complete BI-algebra
(in the sense of [35]):

Lemma 1 (Pred is a complete BI-algebra) We can define all BI-operations:

emp(w) = {(n, η, σ, e) | n ∈ N, η ∈ Env, σ ∈ SetEnv}
(p � q)(w) = {(n, η, σ, h) | ∃h1, h2. h = h1 · h2

∧(n, η, σ, h1) ∈ p(w) ∧ (n, η, σ, h2) ∈ q(w)}
(p −∗ q)(w) = {(n, η, σ, h) | ∀m ≤ n.

((m, η, σ, h′) ∈ p(w) ∧ h#h′) =⇒ (m, η, h · h′) ∈ q(w)}

Proof Note that the quantification in the definition of −∗ is necessary to enforce a
downward-closed predicate. The proofs are straightforward.

The fact that Pred is a complete BI algebra immediately gives us a sound interpretation
of most of the assertions in the logic of [6], but to interpret recursive predicates we also
need to know that the operations are non-expansive:

Lemma 2 The BI-algebra operations on Pred given by the previous lemma are non-
expansive:

,−∗,→,∧,∨ : Pred × Pred → Pred∨
I ,
∧

I : (I → Pred) → Pred.

(In the last two operations, the indexing set I is given the discrete metric.)

Proof For instance, � : UPred(H) × UPred(H) → UPred(H): It suffices to show that
if p

n= p′ and q
n= q ′, then also (p � q)

n= (p′ � q ′). The latter is equivalent to ∀m <

n. (m, η, σ, h) ∈ p � q ⇐⇒ (m, η, σ, h) ∈ p′ � q ′ following easily from the assumption
and the definition of �.

In the following, let us write � for the top element of Pred which is by definition λw ∈
W.N×H = λw ∈ W.N× Env× SetEnv× Heap.

5.2.1 Interpretation of Invariant Extension

To interpret invariant-extension assertions P ⊗Q, we need an operator ⊗ on the set of
semantic predicates Pred. Working with metric-spaces, such a (unique) operator can be
defined using Banach’s fixed point theorem:

Lemma 3 There exists a unique function ⊗ : Pred × W → Pred in the (non-expansive)
function space of CBUltne satisfying

p⊗w = λw′. p(w ◦ w′)

where ◦ : W ×W → W is given by

w1 ◦ w2 = ι((ι−1(w1)⊗w2)ι
−1(w2)) .

Proof Both operations ⊗ and ◦ are mutually recursively defined by the above and their
fixpoints exist by Banach’s fixpoint theorem (see [41]).

Symbolic Execution Proofs for Higher Order Store Programs

5.2.2 Interpretation of Triples

One notable difference w.r.t the interpretation of triples in [7, 40] is that nested triples
(behavioural specs B) now have additional parameters (possibly zero). Therefore, seman-
tic triples now need to work on procedures instead of commands. We define a semantic
interpretation of such Hoare triples next. Recall that we write �γ

k for the k-step reduction
relation of the operational semantics.

Definition 1 Let p, q ∈ Pred, w ∈ W , η ∈ Env, σ ∈ SetEnv, let C be a program statement
and let γ be a procedure environment. We define that w, η, σ |=γ

n (p, C, q) holds iff the
following holds: for all r ∈ UPred(H), all m < n, all heaps h, all stacks s, if (m, η, σ, h) ∈
p(w) � ι−1(w)(emp) � r , then:

1. (C, s · η, h) ∈ Safeγ
m.

2. For all k ≤ m and all h′ ∈ Heap, η′ ∈ Env, if (C, s · η, h) �γ

k (skip, s · η′, h′), then
(m− k, η′, σ, h′) ∈ q(w) � ι−1(w)(emp) � r .

We write n |=γ
π (P,C,Q) iff for all w ∈ W and for all set environments σ and inte-

ger environments η it holds that w, η, σ |=γ
n (�P �π , C, �Q�π). Accordingly we write

|=γ
π (P,C,Q) for ∀n ∈ N. n |=γ

π (P,C, Q).

This definition is similar to the one in [40] with its use of the invariant w and the
baking-in of the first order frame rule, i.e., the quantification over r . The difference is that
the meaning is now relative to the operational semantics (rather than denotational) using
the fixed procedure declarations in γ , and that we use step indexing to measure to what
extent pre- and postconditions should hold. This idea has also appeared in the (unpublished)
appendix of [7]. Note how the definition of |=γ

π (p, C, q) universally quantifies all free
variables on the top level.

The intention is, of course, that a Hoare-triple assertion is interpreted using the above
semantic construct (and this will be seen in Fig. 11). The following lemma is crucial to
achieve that this definition yields a non-expansive map:

Lemma 4 If w
k= w′ and w, η, σ |=n (p, C, q), then w′, η, σ |=min(n,k−1) (p, C, q).

Proof Straightforward verification, using Definition 1, the fact that if w
k= w′ then

ι−1(w)(emp)
k−1= ι−1(w′)(emp), the fact that the separating conjunction � is non-expansive

on UPred(H) and the definition of the distance map (Lemma 2). It is worth noting that to
show this lemma the index m of tuples in w, η, σ |=n (p, C, q) as given in Definition 1
above must indeed be strictly smaller than n9.

5.2.3 Interpretation of our Assertion Language

The interpretation of an assertion P is now defined to be an element �P �π in Pred, where
π is the environment for predicate definitions mapping predicate names (like P) to predi-
cates in UPred(H) of some finite arity. So π maps predicate names to functions mapping

9This also guarantees that certain recursive definitions of predicates are contractive and thus admit a fixpoint.
The existence of recursively defined predicates is, however, not discussed here but in [16].

B. Reus et al.

argument integer and set variables to a predicate in UPred(H). How the declarations are
interpreted will be discussed further below.

The definition uses the complete BI-algebra structure on Pred given earlier to interpret
the standard logical connectives, e.g.,

�P � Q�π w = �P �π w � �Q�π w.

Invariant extension is interpreted as follows:

�P ⊗Q�π w =
(
�P �π ⊗ ι(�Q�η)

)
w

It is worth mentioning that we interpret the logic of the previous Section 4 which uses a
superset of the assertion language defined in Fig. 3 earlier. In particular, the “extended” logic
includes general universal quantification, conjunction and implications between assertions
and (stand-alone) triples as assertions. This allows one to express implications between
triples which will be used later to verify the proof search rules for entailment (see Section 6).

The concrete interpretation of the logical connectives including implication and triples
can be found in Fig. 11. Note that we need to extend the interpretation of expressions eV

from the operational semantics to assertion expressions eE (including set expressions eS)
which requires the interpretation function to have an extra argument σ for set variables. The
details can be found in Fig. 10. Note that the abstract syntax already distinguishes between
sets (eS) and integers (eV) so we do not need to do any type checking. Since we use a
flat store the storable procedures (as expressions) are integers and live in eV . They could,
in principle, be used for arithmetic computations but since nothing about the encoding of
procedures is axiomatised in the logic one would not be able to prove anything for such
unintended uses.

Figure 11 does not contain a clause for e �→ as this can be viewed as an abbreviation
for ∃v. e �→ v. Similarly Fig. 11 contains no clause for e �→ ∀x {P } · (y) {Q} as this can be
viewed as an abbreviation for ∃c.(e �→ c ∧ ∀x {P } c(y) {Q}) for a fresh c.

Note that we could also interpret the spatial implication operator in this model as
�P −∗ Q�π w = �P �π w −∗ �Q�π w. But we don’t need a semantics for spatial implication
as our tool does not support it yet.

Lemma 5 The interpretation of assertions given in Fig. 11 is well defined, ie. all
denotations are non-expansive maps of type W → UPred(H).

Proof Straightforward, the most complicated case is for nested triples but fol-

lows then easily from Lemma 4 using the fact that �{P }e(t1, . . . , tn){Q}�π w
k=

Fig. 10 Interpretation of expressions

Symbolic Execution Proofs for Higher Order Store Programs

Fig. 11 Interpretation of assertions

�{P }e(t1, . . . , tn){Q}�π w′ if, and only if, for all n < k, for all η, σ and for γ ′ as defined

in the Figure it holds that w, η, σ |=γ ′
n (�P �π , call N (t), �Q�π) ⇔ w′, η, σ |=γ ′

n

(�P �π , call N (t), �Q�π).

5.2.4 The Environment for Predicate Definitions

For interpreting predicate tests like P(ev; es) we use a predicate environment that maps each
predicate identifier P to a specific semantic predicate of type Zarityi(P)× Setaritys(P) → Pred
and assume that predicates are always used with the right arity, otherwise the predicate test
is equivalent to false (of course, our tool uses a syntax checker that would reject assertions
that use a wrong number of arguments).

As in [7, 40], recursively defined predicates are interpreted via Banach’s fixed point
theorem:

B. Reus et al.

Lemma 6 Let I be a set and suppose that, for each i ∈ I , Fi : PredI → Pred is a
contractive function. Then there exists a unique p = (pi)i∈I ∈ PredI such that Fi(p) = pi ,
for all i ∈ I .

Since we use predicates with (integer and set) arguments, I needs to be chosen
accordingly.

I =
∑

P∈PredName

Z
arityi(P) × Setaritys(P)

Since predicates cannot use global variables we thus get an interpretation for recursively
defined predicates. The existence of recursively defined predicates is only guaranteed if
their semantics is contractive which is in turn guaranteed if the right hand side of their
declaration is an instance of the pattern discussed at length in [16].

Definition 2 (Soundness of Predicate Context) If
 is a list of (syntactic) predicate dec-
larations then define its semantic validity w.r.t. a concrete predicate environment π as
follows:

π |=
 iff (recdef P(x;α) := Q) ∈
 implies π(P) ∈ Z
|x| × Set|α| → UPred(H)

and for all v ∈ Z
|x|, s ∈ Set|α|

∀n, η, σ, h. (n, η, σ, h) ∈ π(P)(v, s) ⇔ (n, η[x �→ v], σ [α �→ s], h) ∈ �Q�π

and if additionally (recdef P(x;α) := Q) ∈
LsegDefs(n, v, [C1, . . . ,CM], [A1, . . . , AN], [E1, . . . , Ek])
then for any R such that

∀n, η, σ, h. (n, η, σ, h) ∈ R(v, s) ⇔ (n, η[x �→ v], σ [α �→ s], h) ∈ �Q�π

we have that π(P) ⊆ R

and

(recdef P(x;α) := R(y;β) ◦�) ∈
 implies

π(P) ∈ Z
|x| × Set|α| → UPred(H)

and for all v ∈ Z
|x|, s ∈ Set|α| and n, η, σ, h

(n, η, σ, h) ∈ π(P)(v, s) ⇔ (n, η[x �→ v], σ [α �→ s], h) ∈
�
Ŝ�

P

�

π

where Ŝ�
P is as defined in Lemma 8 below.

and

(∀P(x;α)) ∈
 implies π(P) ∈ Z
|x| × Set|α| → UPred(H)

This definition ensures that π satisfies the right conditions for predicate declarations,
declarations with invariant extension, abstract declarations, and inductive declarations,
respectively.

5.3 Semantics of Judgements

First we define the semantics of assertions:

Definition 3 If
 is a predicate declaration and A an assertion then A is valid in
 iff
∀π |=
. �A�π = �. This validity judgement is abbreviated
 |= A. We sometimes drop

 to write simply |= A if the predicate context is irrelevant.

Symbolic Execution Proofs for Higher Order Store Programs

Like the semantic judgement π |=
 for predicate declaration, we also need one for
procedure declarations.

Definition 4 If 	 is a list of (syntactic) procedure declarations with pre- and postcondi-
tions, then define the semantic validity for procedure environments as follows:

γ |=n
π 	 iff (proc F(z) ∀x,α. pre : P post : Q {locals y;C}) ∈ 	 implies

γ (F) = proc (z){locals y;C} and n |=γ
π {P }callF(z){Q} and

(proc abstract F(z) ∀x,α. pre : P post : Q) ∈ 	implies

n |=γ
π (P, callF(z),Q).

We write more succinctly γ |=π 	 if ∀n ∈ N. γ |=n
π 	. The semantic version of judgement

;	 � {P }C {Q} is defined as follows:

;	 |= {P }C {Q} iff

∀n ∈ N.∀π |=
. ∀γ |=n
π 	. n |=γ

π (P,C, Q).

Assume now the module (procedure declarations) (Fi)1≤i≤n under consideration are sum-
marised in a procedure declaration environment 	F . Then the semantics of judgement

;	A �� {P }F(z) {Q} is defined as

;	A |= {P }F(z) {Q} iff

∀π |=
. ∀γ |=π 	A. |=γ∪ρ
π (P, call F(z),Q).

where ρ |= 	F .

5.4 Soundness of Assertion Logic

Our Hoare logic uses axioms for deriving assertions via entailment. Some of the more
interesting ones have been collected in Appendix A.2. We have to establish their soundness.

Theorem 1 (Soundness of �� for entailment of assertions) The rules for �� given in
Section 4.2 are all sound w.r.t. semantics given in Definition 4, in other words

 � P ⇒ Q implies ∀π |=
. �P ⇒ Q�π = �

Proof Since most of the usual logical reasoning is outsourced to the SMT solver which is
assumed to be sound, we only have to deal with the more peculiar entailment axioms. The
ones from Separation Logic are sound due to Lemma 1. The distribution laws for ⊗ are
sound by the semantic definitions as given in Section 5.2.1. Rule (RUNIQUE) holds in our
model only assuming that the semantics of assertion R is contractive in predicate variable
X as we then know that R gives rise to a fixpoint that is necessarily unique in ultrametric
spaces. Rules (SPLIT) and (JOIN) can be shown correct by induction (on the semantics)

B. Reus et al.

which itself holds since the semantics of predicates declared as LSegDefs admit induction.
The (semantic) rule that we use for this is:

LISTINDUCTION

recdef L(s, t;α) := Q ∈ LsegDefn(n, v, [C1, . . . ,CM], [A1, . . . , AN], [E1, . . . , Ek])

, (L(s, t;α) ⇔ Q) |= s = t � α = ∅ ⇒ P

, (L(s, t;α) ⇔ Q) |=
(

P [s, α\n, β] � s �→ C1, . . . ,CM, n �

A1 � · · · � AN � α = {(E1, . . . , Ek)} ∪ β

)
⇒ P

, (L(s, t;α) ⇔ Q) |= L(s, t;α) ⇒ P

where n, v, β /∈ fv(P). Note that spatial implication is required to express the conclusions
of those axioms as instances of the above induction scheme but we already know that this
is available in Pred. For instance, for (JOIN) the predicate P needs to be instantiated as
∀e2, eβ . L(t, e2; eβ) −∗ L(s, e2;α∪eβ). We could also axiomatise spatial implication in the
assertion logic which would allows us to derive (SPLIT) and (JOIN) from (LISTINDUCTION)
but since our verifier does not support spatial implication there is actually no need for this.

The special interpretation of pure assertions guarantees axiom (�-SPLITPURELEFT). To
see this assume (n, η, σ, h) ∈ �A � ��π . Then h has the form h1 · h2 where (n, η, σ, h1) ∈
�A�π and (n, η, σ, h2) ∈ ���π . As � is pure h2 = e and so h = h1 such that we get the
desired result.

The axiom (�-SPLITPURERIGHT) also holds due to the special interpretation of pure
assertions. To see this assume (n, η, σ, h) ∈ �A ∧ (� � true)�π . Then (n, η, σ, h) ∈ �A�π

and (n, η, σ, h) ∈ �� � true�π . Thus h has the form h1 · h2 where (n, η, σ, h1) ∈ ���π and
(n, η, σ, h2) ∈ �true�π . Since � is pure we have h1 = e and so h = h · h1, and from this
(n, η, σ, h) ∈ �A � ��π follows.
(SHALLOWFRAMEPROCEDURES) and (SHALLOWFRAME) hold as framing is “baked into”
the definition of the semantics of triples.

5.5 Soundness of Hoare Rules

Theorem 2 (Soundness of �� for triples) The rules for �� given in Section 4.1 are all sound
w.r.t. semantics given in Definition 4.

Proof Largely by adapting the proofs in [7, 40], adding the procedure and predicate envi-
ronments appropriately. We discuss the new or substantially changed rules:
Rule (RECURSIVEPROCEDURES) : For a given π |=
 and γ |=π 	A and a procedure dec-
laration environment ρ |=π 	F that contains all n non-abstract declared procedures Fi we
show for all i with 1 ≤ i ≤ n simultaneously that

|=γ∪ρ
π (pre(Fi), call Fi (params(Fi)), post(Fi))

which is equivalent to showing that

k |=γ∪ρ
π (pre(Fi), call Fi (params(Fi)), post(Fi))

for all k or equivalently for all η, σ,w, k:

w, η, σ |=γ∪ρ

k (�pre(Fi)�π , call Fi (params(Fi)), �post(Fi)�π) (5)

This is shown by induction on k. By definition of the operational semantics for k = 0 the
claim holds automatically as (more than) one step is used for interpreting the call statement
so it cannot reduce to skip in zero steps. Assume we have proved the claim (5) for all number
less than k and show it for k: According to Definition 1 of triple semantics, assume m < k,

Symbolic Execution Proofs for Higher Order Store Programs

h ∈ Heap, and r ∈ UPred and let (m, η, σ, h) ∈ �pre(Fi)�π w � i−1(w)(emp) � r . Then it
must be that h = h1 · h2 · h3, where

(a) (m, η, σ, h1) ∈ �pre(Fi)�π w

(b) (m, η, σ, h2) ∈ ι−1(w)(emp) and
(c) (m, η, σ, h3) ∈ r .

First we need to show that (call Fi (params(Fi)), s · η, h) ∈ Safeγ∪ρ
m for any stack s. By

definition of the operational semantics – as the unfolding of a procedure and executing the
additional ; return statement take three steps – it suffices to show that

(body(Fi), s · η · η[locals(Fi) �→ 0], h) ∈ Safeγ∪ρ

m−3

which follows from the rule’s hypothesis as follows: First we know by assumption that
γ |=m−3

π 	A; by induction hypothesis ρ |=m−3
π 	F so γ ∪ ρ |=m−3 	A, 	F , thus by the

rule’s hypothesis m − 3 |=γ∪ρ
π (pre(Fi), body(Fi), post(Fi)). Now from this, (a-c), and

the fact that locals(Fi) do not appear in pre(Fi) the required follows. Secondly, we need to
show for all k ≤ m, h′ ∈ Heap, η′ ∈ Env, if

(call Fi (params(Fi)), s · η, h) �γ

k (skip, s · η′, h′) (6)

where η′ = η since procedures in our language only have side effects on the heap, then
(m− k, η′, σ, h′) ∈ �post(Fi)�π w � ι−1(w)(emp) � r . By (6) and definition of operational
semantics we know that

(body(Fi), s · η · η[locals(Fi) �→ 0], h) �γ

k−3 (skip, s · η · η′′, h′′) (7)

must hold for some h′′ ∈ Heap and η′′ ∈ Env. By the same argument as for the first
condition we obtain

k − 3 |=γ∪ρ
π (pre(Fi), body(Fi), post(Fi)) (8)

As before, from (8), using (a-c) and the fact that pre(Fi) does not contain any of the local
variables of Fi we obtain that (m− (k − 3), η′′, σ, h′′) ∈ �post(Fi)�π w � ι−1(w)(emp) � r

and by downward closure that (m−k, η′′, σ, h′′) ∈ �post(Fi)�π w�ι−1(w)(emp)�r . But by
the definition of the operational semantics we know that h′′ = h′, we already know η′ = η,
and that η′′ = η[locals(Fi) �→ . . .] since we do not allow assignments to formal parameters.
Since post(Fi) does not contain any of the local variables of Fi from this follows that
(m− k, η′, σ, h′) ∈ �post(Fi)�π w � ι−1(w)(emp) � r .

Rule (CALL) : Assume that π |=
 and for all n, η, σ, h that

∀m ≤ n. (m, η, σ, h) ∈ �∀x. {A} k(p) {B}�π ⇒ (m, η, σ, h) ∈ �{P } k(e) {Q}�π (9)

Further assume an n and γ such that γ |=n
π �, {A}F(p) {B}. From this we know by

definition that
n |=γ

π (A, callF(p), B) (10)

We need to show that n |=γ
π (P, callF(e),Q). Assuming arbitrary w, η, σ it suffices

to prove that w, η, σ |=γ
n (�P �π , callF(e), �Q�π). From (9) with m := n, η′ = η[k �→

�γ (F)�] and γ ′ := γ [N �→ γ (F)] we obtain

(∀v. w, η′[x �→v], σ |=γ ′′
n (�A�π , callN (p), �B�π))⇒ w, η′, σ |=γ ′

n (�P �π , callN (e), �Q�π)

(11)
By definition of γ ′ and η′, freshness of k and N , setting v := η(x) (11) entails

w, η, σ |=γ
n (�A�π , callF(p), �B�π) ⇒ w, η, σ |=γ

n (�P �π , callF(e), �Q�π)

which by (10) and definition of n |=γ
π (P, callF(e),Q) completes the proof.

B. Reus et al.

Rule (STOREPROC) : Assume π |=
 and γ |=n
π {A}F(p) {B}. From this we get:

n |=γ
π (A, call F(p), B) (12)

We need to show that n |=γ
π (e �→ , [e] := F(t), e �→ S(·)) where

S(·) = (∀p|U , x. {A} · (p|U) {B}) [p|I\U\t|I\U]
where |t| = |p|, ti either value expression ai or ; x = fv(A, B)−p and p = (pi)i∈I ; U =
{i ∈ I | ti = } p|X = (pi)i∈I∩X . According to Definition 1 of |=, assume m < n and
r ∈ UPred and let (m, η, σ, h) ∈ �e �→ �π w � ι−1(w)(emp) � r . Then it must be that
h = h1 · h2 · h3, where

(a) (m, η, σ, h1) ∈ �e �→ �π w

(b) (m, η, σ, h2) ∈ ι−1(w)(emp) and
(c) (m, η, σ, h3) ∈ r .

It is easy to show now that ([e] := F(t), s · η, h) ∈ Safeγ

1 (so m = 1) because �e�η ∈
dom(h) due to (a), F ∈ dom(γ) by assumption and papply γ (F)(u) is defined where
ui = if ti = and ui = η(xi) if ti = xi . It remains to show that (m− 1, η, σ, h1[�e�η �→
�papply γ (F) (u1, . . . , un)�]) ∈ �e �→ S(·)�π w. By definition of assertion semantics it
suffices to show for all v, v′ that

w, η[x �→ v, p|U �→ v′], σ |=γ ′
m−1 (A[p|I\U\t|I\U], callN (p|U), B[p|I\U\t|I\U])

where γ ′ = γ [N �→ (papply γ (F) (u1, . . . , un))]. Since η(t|I\U) = u (the arguments of
papply) and by definition of γ ′ this follows from

w, η[x �→ v, p|U �→ v′, p|I\U �→ t|I\U], σ |=γ ′
m−1 (A, callF(p), B)

which is obtained from (12) by instantiation and downward closure (as m− 1 < m < n).
Rule (EVAL) : We must show that assuming

;	 |= P ⇒ e �→ {P } · (e){Q} � true (13)

it holds that
;	 |= {P }eval e{Q}. So let π |=
, γ |=π 	, and let further η be an
integer variable environment, σ be a set variable environment and w ∈ W and n ∈ N. We
must show that

w, η, σ |=γ
n (�P �π , eval e, �Q�π) (14)

According to Definition 1, assume m < n, h ∈ Heap, r ∈ UPred and let (m, η, σ, h) ∈
�P �π w � ι−1(w)(emp) � r . Then it must be that h = h1 · h2 · h3, where

(a) (m, η, σ, h1) ∈ �P �π w

(b) (m, η, σ, h2) ∈ ι−1(w)(emp) and
(c) (m, η, σ, h3) ∈ r .

From (a), (13) and the semantics of implication we obtain

(m, η, σ, h1) ∈ �e �→ {P } · (e){Q} � true�π w (15)

and thus there are heaps [l �→ v] with �e�η = l and hr such that h1 = [l �→ v] · hr and
(m, η, σ, [l �→ v]) ∈ �e �→ {P } · (e){Q}]�π w from which follows that

v ≡ �proc(z){locals y;C}� and w, η, σ |=γ ′
m (�P �π , call N (e), �Q�π) (16)

where γ ′ = γ [N �→ proc(z){locals y;C}] for a fresh procedure name N .

Symbolic Execution Proofs for Higher Order Store Programs

We observe by definition of the semantics, the fact that h = [l �→ v] · hr · h2 · h3 and
γ ′(N) = �v�−1 (due to the first part of (16)), that for all stacks s and all k ∈ N

(eval e, s · η, h) �γ

k � ⇐⇒ (call N (e), s · η, h) �γ ′
k � (17)

First, we have to show for any stack s that (eval e, s · η, h) ∈ Safeγ
m. But (17) tells us

that this is the case iff (call N (e), s · η, h) ∈ Safeγ ′
m which, in turn, follows from the second

part of (16) and the fact that (m, η, σ, h) ∈ �P �π w � ι−1(w)(emp) � r by (a-c).
Next we show the second condition. Thus, assume k ≤ m and

(eval e, s · η, h) �γ

k (skip, s · η′, h′) (18)

We need to show that (m − k, η′, σ, h′) ∈ �Q�π w � ι−1(w)(emp) � r . Again, by (17) we
know that (call N (e), s · η, h) �γ

k (skip, s · η′, h′) from which by (16) it follows that
(m− k, η′, σ, h′) ∈ �Q�π w � ι−1(w)(emp) � r which completes the proof.

Other interesting rules: rule (RUNIQUE) is not sound in general. However it does hold
if the predicates in π are unique solutions of their defining equations in
. This can be
guaranteed together with the existence of an π ∈
 if the recursive predicate declarations
are of a pattern described in detail in [16]. The ghost statements are all interpreted like skip;
they do not have a computational effect and the soundness of the corresponding rules can
thus be shown relatively straightforwardly using the consequence rule.

5.5.1 Soundness of the SMT Solver

The following theorem states that the judgement proven by the SMT solver is sound for our
logic (assuming that the solver is already sound for classical logic). We already have a func-
tion that can eliminate spatial parts from assertions, we also assume we have an operation̂
that replaces � by ∧ such that ̂purify(P) is a classical statement about numbers, tuples and
sets.

Theorem 3 (Soundness of SMT) Assume the SMT solver correctly solves entailments of
translated pure assertions and that � and � are pure assertions. Then � �SMT � implies
�� ⇒ ��π = � for all predicate environments π .

Proof By the assumption and the correctness of the SMT solver we obtain �cl �̂ ⇒ �̂ (†).
We prove two lemmas:

1. For all pure assertions ϒ , and all w ∈ W,n ∈ N, h ∈ Heap, η ∈ Env, σ ∈ SetEnv it
holds that (n, η, σ, h) ∈ �ϒ�π w implies h = e and �cl ϒ̂

2. For all pure assertions ϒ , if �cl ϒ̂ then (n, η, σ, e) ∈ �ϒ�π w for all w ∈ W,n ∈
N, η ∈ Env, σ ∈ SetEnv.

With the two lemmas we can now show the theorem. Assume we have (m, η, σ, h) ∈
���π w. Then by (1) we get that h = e and �cl �̂, from which by (†) it follows that �cl �̂

and finally by (2) that (m, η, σ, e) ∈ ���π w concluding the proof.
Lemmas (1) and (2) can be shown by induction on the structure of assertion (disjunct) �

and holds by definition of the semantics where it can be seen that assertions that should be
independent of the heap only hold in the empty heap e.

Note that a pure formula ϒ in our logic does not hold in the common sense (where its
interpretation would need to hold for all heaps), but just for the empty heap. This is why

B. Reus et al.

we do not have true as a pure assertion and thus do not have true in the low level assertion
logic. This is not a problem as we are interested in proving validity of Hoare triples and not
assertions and since pure assertions will always be “framed onto” spatial assertions.

6 Automation of Program Verification

In this section we explain how the automated verification works by giving deterministic
rules for proof search and discuss their soundness.

6.1 Overview

The automatic prover consists of three main parts.

1. Verification condition generator: The verification condition (VC) generator reads in
annotated programs and produces from them a set of VCs, such that if all the VCs
hold then the input program meets its specifications. Each VC is of the form
;	 ��
{P }C {Q} as explained earlier.

2. Symbolic execution engine: We prove Hoare triples using symbolic execution with
separation logic, based on ideas put forward in [5] and now well established. The sym-
bolic execution algorithm relies on automatic entailment provers at various points. At
the end of each symbolic execution step happens a cleanup operation that is of a “cos-
metic nature”, ie. its purpose is to keep the goals as small as possible without changing
their semantics.

3. Entailment provers: The use of nested triples adds considerably to the difficulty
of proving entailments automatically. Because assertions can contain triples and vice
versa, we need solvers for entailments between assertions and triples, respectively,
defined mutually recursively.

In fact in our implementation there are proof systems for five different judgements; many
of these proof systems need to invoke each other. The judgements and their informal mean-
ings are as follows. Shaded variables (such as the frame �) are those whose value is not
given as an input to the prover, but rather is inferred by the proof rules.

– � � I ∃v.ϒ � � . Entailment between assertion disjuncts. Spatial conjunction
� entails assertion disjunct ∃v.ϒ with frame � left over. I is a mapping from the
existentially quantified variables v to appropriate witnesses for these.

– B1 � B2. Entailment between behavioural specifications.

– B �find-post {�} ·(t)
{

Q
}

. Computing the postcondition for an invocation. This judge-

ment computes an assertion Q which describes the state that results from invoking code
with behaviour B in a state described by spatial conjunction �.

–
 : ϒ �find-tr ∃ v . eA �→ B � Rpure .10 Finding specifications for code stored on the
heap inside a symbolic state. Rpure includes all the pure formulae that are the result of
any unfolding or splitting required during the search and that are relevant for B(·) and
x are the existentially quantified variables obtained from unfolding or splitting.

–
, 	 � {P }C {Q}. Symbolic execution.

10In [14] we had a less refined version ignoring pure facts Rpure about variables x obtained from unfolding
which are important for certain examples, see Fig. 12.

Symbolic Execution Proofs for Higher Order Store Programs

Fig. 12 Example demonstrating the need for Rpure in (EVAL)

We shall show that our proof systems for these judgements are all sound. The following
theorem shows soundness of the (implemented) symbolic execution, entailment and other
proof search rules with respect to the “core” logic introduced in Section 5.5 which we
already know are sound (see Theorem 2).

Theorem 4 (Grand soundness theorem) Our five proof systems are sound, that is:

1. If � �I ∃v.ϒ � � (where fv(�) ∩ v = ∅) then |= � ⇒ ϒ[v\I (v)] � � where:
fv(�) ⊆ fv(�), dom(I) = v and fv(Im(I)) ⊆ fv(�).

2. If B1 � B2 then |= B1[\k] ⇒ B2[\k] where k /∈ fv(B1, B2).
3. If B �find-post {�} · (t) {Q} then |= B[\k] ⇒ {�} k(t) {Q} where k /∈ fv(B,�, Q).
4. If
 : ϒ �find-tr ∃v. eA �→ B � Rpure then
 |= ϒ ⇒ ∃v. eA �→ B � Rpure � ϒ ′ for

some ϒ ′.11

5. If
, 	 � {P }C {Q} then
;	 |= {P }C {Q} (that is, our symbolic execution rules are
sound).

We will also need the soundness of the SMT solver as shown in Theorem 3.

Proof Grand Soundness Theorem We have already shown in Section 5.5 the soundness of
the Hoare logic rules for the rule for judgements
;	 |= {P }C {Q} and
 �� A. So in
the soundness proofs we can freely use these “core” rules as listed in Appendix A. In other
appendices we present detailed soundness arguments for selected interesting rules of each
of the five judgements:

11We deviate from [14] here in the sense that we only require ⇒ and not ⇔. This is necessary to obtain
a sound splitting rule for list segments not discussed in [14]. As a further advantage it allows one to use a
“core” (EVAL) rule more akin to the one used in proof search.

B. Reus et al.

1. � �I �: See Appendix D where soundness of rules (INSTUSINGEQ), (CANCELPT1),
and (INSTMATCHADDR) is shown.

2. B1 � B2: See Appendix E where soundness of rules (REMOVERIGHT), (DISJPRE),
(EXISTSPRE), and (TRIPLEENT) is shown.

3. B �find-post {�} ·(t) {Q}: See Appendix F where soundness of rules (INSTPARAM), and
(INFERSPECFORCALL) is shown.

4.
 |= ϒ ⇒ ∃v. eA �→ B � Rpure � ϒ ′: See Appendix H where soundness of rules
(FIND), (FINDUNFOLD) and (FINDSPLIT) is shown.

5.
, 	 � {P }C {Q}: See Appendix C where soundness of rules (LOOKUP), (EVAL) and
(STORECODE) is shown.

6.2 Verification Condition Generation

First the predicate context
 is built. This is done by collecting all predicate declarations
provided by the user, and then adding some extra equivalences to allow the convenient
folding and unfolding of predicates defined by invariant extension. More precisely, for each
definition recdef S(a, b) := P(a) ◦� where P is recursively defined as recdef P(a) := R[P]
for some appropriate assertion R we automatically declare a predicate Ŝ�

P (a, b) such that

Ŝ�
P (a, b) ⇔ S(a, b). The details can be found in the following Section 6.2.1 (see Lemma 8).

Note also that we assume that all existentially quantified variables in predicate definitions
are renamed to be fresh in a way such that they can never clash with any other variables
names in the future. This removes some side conditions from rules involving predicates and
also allows the computation of the automatically declared predicates discussed above.

Secondly the procedure context 	 is built by collecting the specifications (pre- and post-
conditions) declared for each procedure (including abstract ones); for each procedure F we
include in 	 the triple {pre(F)}F(params(F)) {post(F)}.

Finally for each (non-abstract) procedure F we generate the following VC:

, 	 � {pre(F)} body(F) {post(F)}

which will be proved with the help of symbolic execution rules as described in Section 6.3

6.2.1 Invariant Extension Involving Recursive Predicates

Lemma 7 For every recursively defined predicate recdef P(x;α) := R[P] and � with free
integer variables in y∪x, free set variables in β∪α none of which are existentially quantified
in R, there is a recursive predicate definition recdef S�

P (x, y;α, β) := Q(R)[S�
P] such that

S�
P (x, y;α,β) ⇔ P(x;α)⊗�.

Proof Plotkin’s Lemma states that h(fix f) = fix g if g ◦ h = h ◦ f for h : A → B and
endomaps f : A → A and g : B → B. This can be easily shown by using the fixpoint
property, fix f = f (fix f), using the rule (RUNIQUE). We will use this lemma, setting
h(P) := P ⊗�, f (P) := R[P] and g(P) := Q(R)[P] where we extend ⊗ to work
on predicates with arguments of type PredI in the natural pointwise fashion. It then only
remains to show that

Q(R)[⊗�] ⇔ R[]⊗� (19)

Symbolic Execution Proofs for Higher Order Store Programs

to conclude that fix Q(R) ⇔ (fix R)⊗�. Define Q(R) by induction on R accordingly:

Q(R) = (e; s) if R = (e; s)

Q(R) = φ if R = φ and φ is an atomic pure formula

Q(R) = Q(R1) � Q(R2) if R = R1 � R2

Q(R) = Q(R1) ∨Q(R2) if R = R1 ∨ R2

Q(R) = ∀x.Q(R1) if R = ∀x.R1

Q(R) = ∃x.Q(R1) if R = ∃x.R1

Q(R) = Q(R1) ⇒ Q(R2) if R = R1 ⇒ R2

Q(R) = {Q(R1) � �} e(t) {Q(R2) � �} if R = {R1} e(t) {R2}

We need to show (19) which is relatively straightforward. We provide details for some
interesting cases. R = (e; s) :

Q(R)[⊗�] = (⊗�)(e; s)

⇔ pointwise def. of ⊗ ((e; s)⊗�)

= R[]⊗�

R = φ : Q(R)[⊗�] = φ ⇔ φ⊗� = R[]⊗�

R = R1 � R2 :
Q(R)[⊗�] = (Q(R1) � Q(R2))[⊗�]

= Q(R1)[⊗�] � Q(R2)[⊗�]
⇔ Ind.Hypothesis(R1[]⊗�) � (R2[]⊗�)

⇔ (R1 � R2)[]⊗�

R = {R1} e(t) {R2} :
Q(R)[⊗�] = {Q(R1) � �} e(t) {Q(R2) � �} [⊗�]

= {Q(R1)[⊗�] � �} e(t) {Q(R2)[⊗�] � �}
⇔ Ind.Hypothesis {R1[]⊗� � �} e(t) {R2[]⊗� � �}
⇔ {R1[] ◦�} e(t) {R2[] ◦�}
⇔ {R1[]} e(t) {R2[]}⊗�

R = ∃x. R1 :
Q(R)[⊗�] = ∃x.Q(R1)[⊗�]

⇔ Ind.Hypothesis∃x.(R1[]⊗�)

⇔ (∃x. R1[])⊗� since x /∈ fv(�)

Lemma 8 For every recursively defined predicate recdef P(x;α) := R[P] and � with free
integer variables in y ∪ x and free set variables in β ∪ α none of which are existentially
quantified in R, there is a recursive predicate definition recdef Ŝ�

P (x, y;α, β) := R̂[S�
P]

such that Ŝ�
P (x, y;α,β) ⇔ P(x;α) ◦�.

Proof By Lemma 7 we can define Ŝ�
P (x, y;α,β) := S�

P (x, y;α,β) � �.

B. Reus et al.

6.3 Symbolic Execution

The symbolic execution rules for our verifier are given in full in Appendix B. One such rule
is:

LOOKUP

purify(ϒ) �SMT eA = (e′A + o)

;	 � {x = (e[x\x]′) � P � e′A �→ C0, . . . , Co−1, e, Co+1, . . . , Cn)[x\x]′
}
C {Q}

;	 � {ϒ � e′A �→ C0, . . . , Co−1, e, Co+1, . . . , Cn

}
x := [eA];C {Q} x′ fresh

Most of these rules are similar in spirit, if not detail, to those found in [5]. In particular, we
always reason about a command followed by a “continuation” C. This allows us to avoid
introducing existential quantifiers; the previous values of variables can be represented with
fresh variables such as x′ in the rule above. It also demonstrates how the SMT solver is used
to infer some pure facts (often for equational reasoning).

To show their soundness, we derive our symbolic execution rules from the core rules
described in the previous section. As an example, Appendix C.1 gives such a derivation for
(LOOKUP).

The rules which are intrinsically new in our work are those for the statements which
make use of higher order store, namely eval [eA](p) and [eA] := F(optparams). Here we
just show a simplified version of the rule eval. The full version of this rule allows additional
annotations to the statement, which help guide the proof. That version, and all the other
rules, can be found in the Appendix.

The assertion Rpure appearing in this rule contains (pure) information resulting from unfold-
ing predicates or splitting lists during the search for an appropriate triple for the procedure
stored in E. The need for including it in the precondition of the �find-post judgment becomes
clear when considering programs like in Fig. 12. The first predicate definition represents a
varying number of adjacent heap cells. The second predicate is a linked list segment contain-
ing code which expects two such $Cell arguments. The number of cells for each argument
can vary for each stored procedure in the list, but this typing information is contained within
the abstract list %fs.

Procedure main takes three arguments: the first and second point respectively to 1 and
2 adjacent heap cells; the third points to some code at address f that is contained in the
list beginning at address a. The final constraint in the precondition says that the code at f

expects 1 cell and 2 cells in its first and second argument respectively. The body simply runs
the code with the two arguments, which intuitively will succeed. We will now discuss why
it is important to include extra pure information. The triple for f that is found by �find-tr
splitting the $CodeList predicate is:

∀y, z.
{
$Cells(y, t ′1) � $Cells(z, t ′2)

} · (y, z)
{
$Cells(y, t ′1) � $Cells(z, t ′2)

}

Symbolic Execution Proofs for Higher Order Store Programs

where skolemization freshens the originally existentially quantified t1, t2 variables to fresh
t ′1, t ′2.

Then, in order to show the �find-post hypothesis of (EVALUNGUIDED) the rule (INFER-
SPECFORCALL) from Section 6.4.3 requires to show that the current symbolic state (ϒ)
entails the precondition (P). Without including the extra pure part Rpure, the entailment thus
is

$Cells(x, 1) � $Cells(y, 2) � $CodeList(a, z;%f s) �

(f, %types) ∈ %f s � %types = {(1, 1)} ∪ {(2, 2)} � $Cells(x, t ′1) �

$Cells(y, t ′2)

which does not hold because we do not remember anything about the values of t ′1 and t ′2
that had been revealed by the splitting. However, if we add the extra pure information that
will have been exposed by the �find-tr judgment using splitting the entailment is (for clearer
presentation the non-crucial parts are omitted)

$Cells(x, 1) � $Cells(y, 2) � $CodeList(a, z;%f s) �

(f, %types) ∈ %f s � %types = {(1, 1)} ∪ {(2, 2)} �

. . . � %types = {(1, t ′1)} ∪ {(2, t ′2)}
� $Cells(x, t ′1) �

$Cells(y, t ′2)

which will hold because we can get the necessary equalities t ′1 = 1 and t ′2 = 2 through
the assumption {(1, t ′1)} ∪ {(2, t ′2) = %types = {(1, 1)} ∪ {(2, 2)}. Note that it is legitimate
to add Rpure temporarily to the current state ϒ as we know by the �find-tr-assumption that
ϒ ⇒ true � Rpure and thus ϒ ⇔ ϒ � Rpure (by axioms (�-SPLITPURERIGHT) and (�-
SPLITPURELEFT)).

6.3.1 Simplification After each Symbolic Execution State

We can symbolically execute a procedure by symbolically executing the individual program
statements. The top level procedure is main(). At the end of each program statement dur-
ing symbolic execution, however, there is an optional “cleanup” phase designed to simplify
the symbolic heap state. This is merely cosmetic with a goal of keeping the proof graphs
more readable. There are three simplifications taking place:

1. Remove unused skolem variables
2. Remove redundant pure formula
3. Minimize �→ for adjacent heap-cells

The first stage looks for an equality (between integers or sets) where at least one of the
left or right-hand side is a skolem variable (identifiable by its ending with a number). The
skolem variable may then be substituted by the expression on the other side of the equality
in the rest of the assertion, and the equality dropped.

cleanup1(�) = if (v = e,�) or (e = v,�) ∈ split(�)

and isSkolem(v)

then �[v\e]
else �

where split(�) returns a list of all ways of splitting out an atomic formula A from an
assertion �, and returning a pair (A,�) where � is all the other formulae.

The second stage uses the SMT solver to remove any pure formulae which are implicit
in the rest of the assertion. This is achieved by initially partitioning the assertion into two
parts, ie. partition(�) = (�spatial,�pure) where �spatial is a spatial formula not containing
any pure parts and �pure is a pure formula such that � ≡ �spatial � �pure. Then, iterating

B. Reus et al.

through each pure atomic formula A in �pure, we check whether A is implied by the new
assertion being built, and drop A or add it to the new assertion accordingly.

cleanup2(�) = cleanup2Aux(partition(�))

cleanup2Aux(�spatial,�pure) = if �pure is empty then �spatial

else if �pure matches syntactically A � �pure

and purify(closure(�spatial)) �SMT A

then cleanup2Aux(�spatial,�pure)

else cleanup2Aux(�spatial � A,�pure)

The third stage looks for multiple points-to formula which, together, address adjacent
heap cells. These formulae can then be condensed into a single points-to occurrence.

cleanup3(�) = if � ⇔ a �→ C1, . . . ,Cn � �′
and �′ ⇔ a′ �→ C ′ � �

and purify(closure(�)) �SMT a + n = a′
then a �→ C1, . . . ,Cn,C

′ � �

else �

The cleanup is optional, set by a configuration flag. Whilst ordinarily it is desirable with
no adverse effects, there is a cost in verification time (especially those stages using the SMT
solver). Additionally, in the case of large assertions a pure formula may be removed that is
syntactically identical to part of a future entailment goal. It is possible that the SMT solver
reaches its timeout and verification will not succeed because the entailment is no longer
trivial.

Soundness of Cleanup Stages For all three stages, i.e. for k = 1, 2, 3, we can show that
cleanupk(�) ⇔ �.

1. For cleanup1 this follows from the fact that

h ∈ ��[v\e]�ρ ⇔ h ∈ ���ρ[v:=�e�ρ

⇔ h ∈ ���ρ ∧ ρ(v) = �e�ρ

⇔ h ∈ ���ρ ∧ emp ∈ �v = e�ρ

⇔ h ∈ �� � v = e�ρ

for any heap h and environment ρ from which one can conclude that |= � � v = e ⇔
�[v\e].

2. To show the soundness of cleanup2 it suffices to consider the else case of the con-
ditional and more precisely show that if �pure matches syntactically A � �pure and
purify(closure(�spatial)) �SMT A then �spatial � �pure ⇔ �spatial � �pure. From the
second assumption it follows from soundness of SMT, Lemma 9 and (CLOSURE)
that �spatial ⇔ �spatial � A. Thus by (�-MONOTONICITY) we get that �spatial �

�pure ⇔ �spatial �A��pure. By the first assumption and (�-ASSOCIATIVE) we get that
�spatial � �pure ⇔ �spatial � �pure.

3. Soundness of cleanup3 follows from the following considerations: From the third
assumption of the conditional follows by the soundness of the SMT solver that
purify(closure(�)) ⇒ a + n = a′ so by Lemma 9 and (CLOSURE) we get that
� ⇔ � � a + n = a′. Together with the other two assumptions in the condition we
obtain that � ⇔ a �→ C1, . . . ,Cn � a + n �→ C ′ � � from which the desired result
follows by (�→-GROUP).

Symbolic Execution Proofs for Higher Order Store Programs

6.4 Entailment Proof Search Algorithms

6.4.1 Entailments Between Assertion Disjuncts

The proof rules for this judgement are given in Fig. 13, and their soundness is proved in
Appendix D.

There are three stages in the proof search.

1. Preparation. First, blocks of consecutive heap cells, on both sides of �, are broken up
e.g. x �→ a, 0 is replaced by x �→ a � x+1 �→ 0. Secondly, pure information which
is implicit in the spatial parts on the left is made explicit using closure(−), e.g. if the
spatial parts are x �→ �y �→ 0 the pure constraints x �= 0, y �= 0 and x �= y are added.
We need to do this because otherwise, once we start cancelling off spatial formulae we
will lose this information.

2. Cancelling spatial formulae. This is the main part of the proof. We successively cancel
spatial pieces from the left and right sides of �, sometimes instantiating existentially
quantified variables in the process. For example, the goal ϒ � x �→ 3 �I ∃u, v. � �

x �→ u � � is reduced to ϒ �I ′ ∃v. �[u\3] � � by cancellation, where I will be
I ′[u := 3]. During this stage, calls to the prover for entailments between specifications
may be necessary. For instance, when solving the goal ϒ � x �→ ∀a {P } · () {Q} �I

��x �→ ∀a
{
P ′} ·() {Q′}�� we can cancel the heap cells at x only if ∀a {P } ·() {Q} �

∀a
{
P ′} · () {Q′}. which is, semantically speaking, ∀a {P } k() {Q} ⇒ ∀a

{
P ′} k()

{
Q′}

for a fresh variable k. Sometimes different choices of instantiation for an existential
variable lead to the cancellation of different spatial parts, so in general backtracking
may be needed. The rules that give rise to backtracking are explicitly labelled as such.
They are tried in the order in which they are listed. This means that applications of the
rules which can backtrack are postponed as long as possible, which should be more
efficient; if backtracking rules are used early, then other independent reduction steps
may need to be repeated in many branches. Note that the rules are meant to match
entailment problems modulo the order of the spatial conjuncts involved.
Backtracking. As identified above, the four rules in this phase which backtrack are
(INSTMATCHADDR), (INSTMATCHARG), (INSTTRIPLEVARS) and (PUREINST). In
particular:

– (INSTMATCHADDR). Here we should commit to the first available choice of cell
from the RHS (that cell will have to be cancelled sometime, so there is no point
trying other choices), but then backtrack trying different cells on the LHS.

– (INSTMATCHARG). Here we should commit to the first available choice of predi-
cate use on the RHS (this will have to be cancelled sometime, so there is no point
trying other choices), but then backtrack trying different predicate uses on the LHS.

– (INSTTRIPLEVARS). Here we instantiate variables which appear inside a nested
triple, but are actually quantified at the top level (outside the triple). We arbitrarily
choose variables which appear in the LHS.

– (PUREINST). Here we unintelligently guess instantiations for any remaining quan-
tified variables that appear in a pure formula. It arbitrarily chooses a variable from
the LHS.

Cutting. For efficiency reasons, some of the above rules can sometimes cut when they
fail. Reminiscent of the cut operation ! in Prolog, this causes the search to abandon
the current goal and return to the last point at which a backtrackable choice was made.

B. Reus et al.

Fig. 13 Rules for automatically proving entailments between assertion disjuncts

Cutting is done when one of the rules can detect already that the current goal is not
proveable.

For example, given the goal P(x) �I P(x) � y �→ , the (CANCELPT1) rule (which
is tried before (CANCELPRED)) can already detect that the goal is unprovable because
there is no way to cancel y �→ from the right. Thus (CANCELPRED) cuts and this

Symbolic Execution Proofs for Higher Order Store Programs

goal is abandoned, rather than wasting the time of using (CANCELPRED) to cancel P(x)

from both sides only to get stuck later.
3. Pure reasoning. The cancellation rules are designed to reduce the goal to the form

ϒ �I � � � where � is pure. We finish by sending the pure entailment problem
purify(ϒ) �SMT � to an SMT solver (see rule (PURE)), and we take ϒ as the inferred
frame �, and the empty map for I .

6.4.2 Entailments Between Specifications

The four proof rules for the judgement B1 � B2 are given in Fig. 14, and their soundness is
proved in Appendix E. The rules are applied in the order we present them.

The first three rules simplify the entailment problem by making the specification on
right hand side simpler. The first rule, (REMOVE∀RIGHT), removes the (top-level) universal
quantifiers, the second rule (DISJPRE) deals with disjunctions in the precondition and the
third rule (EXISTSPRE) removes any existential quantifiers in the precondition.

The final rule (TRIPLEENT) breaks down the checking of an entailment B � {�}·(t) {Q}
between specifications into two tasks. Intuitively, we first use �find-post to try to compute a
postcondition ∨m

i=1∃vi .ϒi for the code with specification B when run in a state satisfying
�. We then check whether ∨m

i=1∃vi .ϒi implies the required postcondition Q, making sure
no variable clashes can occur.

6.4.3 Inferring Postconditions for Invocations

The proof rules for this judgement are given in Fig. 15, and their soundness is proved in
Appendix F. The first rule we have for �find-post instantiates ∀ quantifiers on the left hand
side so that the parameters in the two specifications match. (The side condition here makes
sure that we instantiate the leftmost quantified parameter, for the sake of determinism.)

Fig. 14 Rules for automatically proving entailments between specifications

B. Reus et al.

Fig. 15 Rules for automatically inferring postconditions for procedure invocations

The main rule for �find-post is (INFERSPECFORCALL). Underlying the rule is a combi-
nation of ∀-instantiation, and the (SHALLOWFRAMEPROCEDURES) and (CONSEQUENCE-
PROCEDURES) axioms.

Note that after (INSTPARAM) has been used to make the parameters match, some bound
variables may need to be renamed to fresh variables to allow the (INFERSPECFORCALL)
rule to be used. We do not go into detail about these renamings.

6.4.4 Finding Specifications Inside a Symbolic State

To be able to symbolically execute an eval [e](p) statement, we need to first find in our
symbolic heap a cell e �→ B; we can then use the specification B to reason about the
invocation. We use�find-tr for finding such specifications. The proof rules for this judgement
are given in Fig. 16.

When the required cell e �→ B is explicitly present in the symbolic heap, finding it
is easy; the (FIND) rule covers these cases. In practise, however, the specification is often
“packaged up” inside a user-defined predicate, and requiring such predicates to be explicitly
unfolded or split to reveal the specification would be extremely inconvenient. Therefore, our
prover for �find-tr does a limited amount of such unfolding and splitting automatically, as
described by the (FINDUNFOLD) and (FINDSPLIT) rules. The exact limitation is determined
by a constant that prescribes the “depth” of the nested unfoldings which is kept small to
reduce the search space. An extension to address this issue will be presented in Section 6.6.

6.5 An Example of Proving Entailments Between Specifications

We mentioned in Section 3 that a key step in the verification of our example program is
proving that the strong specification for the list library entails the weaker variation (see the
entailment (2)). We now discuss this point in more detail, emphasising how the entailment
prover for assertions and the prover for specifications are mutually recursive.

Symbolic Execution Proofs for Higher Order Store Programs

Fig. 16 Rules for finding specifications inside a symbolic state

Before the call to the useFib procedure in main, the $ListLibraryStrong predicate is
unfolded, and folded up into $ListLibraryWeak. This essentially means proving (2) which
is an entailment between assertion disjuncts.

The proof proceeds by cancelling out the atomic formulae, which in this case means
using (CANCELPTTRIPLE) for each of the four library procedures. This is where the entail-
ment prover for specifications is needed: the premise of this rule requires that each strong
specification entails the respective weak variation.

This entailment is checked by the (TRIPLEENT) rule, which has two premises. The first
uses the judgement �find-post – with (INFERSPECFORCALL) – which will check that the
weak precondition entails the strong precondition, with some inferred frame left over (in
this case the frame is trivial). For the second premise it is required to prove that the strong
postcondition (together with the frame) entails the weak one. Using again the entailment
prover for assertion disjuncts, one obtains the following:

$AssocListH(al, {key} ∪ κ) �[κ ′ �→{key}∪κ] ∃κ ′. $AssocListH(al, κ ′)
The detailed steps of the reasoning are reproduced in Appendix I.

6.6 Advanced Hints

In Section 2.3.2, one saw hints for the prover in the form of instantiation hints, for quanti-
fied variables, and ghost-statements, used during the symbolic execution. For some specific
example programs, a need arose for the provision of additional hints. These advanced hints

B. Reus et al.

allow the user to gain explicit control over the automated built-in entailment proof search
algorithms to perform complex logical reasoning the automated algorithms are unable to
perform on their own (due to restricted power of the SMT solver and limited proof search).
We distinguish two categories:

– for eval: user-guidance for finding the right triple by using ghost unfolds and splits and
using a lemma to show the entailment between the stored procedure’s precondition and
current state.

– for storing procedures: relaxing the condition that the stored procedure must meet
the specification prescribed by the current state and allowing a user-guided entail-
ment proof between established and required triple in terms of ghost folds in pre- and
postcondition.

6.6.1 Predicate Folding for Finding Triples and Lemma Application for Entailment

atomicst ::= . . .

| eval [aexp](x∗) inst-hints? lookup? lemma-app?

| . . .

lookup ::= before ghostopen∗

lemma-app ::= after L(t∗)

The eval statement has been enriched with two hooks into the execution of the eval rule.
The “lookup” hint that may be provided to eval [a](. . .) tells the prover where to find the
triple at address a in the cases where it is (deeply) hidden inside predicate instances. It is a
list of ghost unfold/split statements. As mentioned in Section 6.4.4, without the hints if the
triple is not explicitly visible in the symbolic heap state our verifier will only do a limited
amount of automatic unfolds/splits which, however, are carried out in an unintelligent and
inefficient way when there are a large number of predicate instances in the current symbolic
heap. Accordingly, the�find-tr judgement presented earlier is extended to allow the provision
of a sequence of ghost statements G:
 : ϒ �G

find-tr e �→ B �Rpure. This gives the user some
control over the search for matching nested triples. The two extra rules which make use of
the G, (FINDGUIDEDUNFOLD) and (FINDGUIDEDSPLIT), can be found in Appendix G.

The “lemma-app” hint provides a hook to apply a lemma to the current symbolic state,
before the stored procedure is evaluated. First we have to explain what we mean by a lemma
as there are no extra syntactic lemma declarations. We rather follow VeriFast [29, 30] and
make use of the following observation:

{P } skip {Q} ⇐⇒ P ⇒ Q

Thus, an entailment lemma of the form P ⇒ Q can be declared simply as a procedure with
precondition P , postcondition Q and body skip. This is desirable because the lemma will be
automatically proved (with the additional help of ghost statements maybe). If the lemma is
an abstract procedure, then the obligation to prove it falls to the user to undertake elsewhere.
This feature is useful when the SMT solver is unable to complete the proof.

Symbolic Execution Proofs for Higher Order Store Programs

6.6.2 Predicate Folding for Triple Entailment

atomicst ::= . . . | [aexp] := F(optparam∗)
deepframe? storecode-pre? storecode-post?

storecode-pre ::= pre ghost-fold+

storecode-post ::= post ghost-fold+

The next class of hint concerns the statement for storing code. Consider the example in
Fig. 17.

This example uses two predicates, $List representing a list of procedures, and $A rep-
resenting the pre/postcondition of the procedures which appear in the list. To make the
code-list definition easily reusable, the specification has been parameterized by the pred-
icate $A. Thus, for different examples the same list definition can be used by providing
different definitions of the $A predicate.

In procedure F we have a pointer l to a list. The line [f] := G() adds procedure G
to the head of the list, resulting in a new list starting at f . But G’s footprint is smaller
than $A, which is allowable because we can use the deepframe annotation to frame on the
additional constraint(s). During the symbolic execution of F , it is then necessary to prove
the entailment

f �→ ∀r. {r �→ � c �→ } · (r) {r �→ � c �→ } � f �→ ∀x.
{
$A(x)

} · (x)
{
$A(x)

}

Fig. 17 Example demonstrating additional hints for the store-code statement

B. Reus et al.

It is clear that the nested pre- and postcondition are precisely $A(r), however the proof
algorithm for entailment of triples does not do automatic folds or unfolds (since they are
expected to be done in ghost statements in the procedure body only) and thus needs to be
told that this is the case. The two extra pre and post annotations to the store-code statement
hint serve this purpose and can give the necessary fold instruction. A demonstration of the
use of such hints in a more realistic setting can be seen in the verification of the reflective
visitor pattern [28].

To establish the extra annotations the entailment judgement �I needs to be able to use
the predicate context, and take a fold command giving rise to the following enriched form
of judgement:

 : ��I
G∃v.ϒ � �

The enriched judgement is supported by two extra entailment rules, which are used by a new
(STORECODEGUIDED) rule for storing procedures. These rules are given in Fig. 18, and
their soundness is proved in Appendix C.5 and D. Note that this rule can only be applied to

Fig. 18 Additional symbolic execution and entailment rules for store-code hints

Symbolic Execution Proofs for Higher Order Store Programs

cases where the triple being manipulated does not contain a disjunction in its pre- or post-
condition. This has been sufficient for our examples, however the rule could be generalised
by iterated uses of the �∅G in the premise.

7 Related Work

The verification algorithms presented and proved correct in this paper have been imple-
mented in a tool, Crowfoot, that can be considered as extending Smallfoot [5] (though
Crowfoot was written from scratch) by allowing (partially applicable) procedures to be
stored on the heap and to be invoked from the heap. The assertion language uses nested
triples to specify stored procedures and recursively defined assertions to deal with recur-
sion through the store. An SMT solver is invoked to deal with pure assertions and therefore
Crowfoot can be used to prove more than just memory safety (see [13, 28], and the example
in this paper where fib is proved to compute Fibonacci numbers).

Nowadays, there exist numerous logics and verification systems that use separation logic
and some of them are Coq extensions. In this section we will only focus on the ones that
support higher-order store. A detailed comparison of effectiveness and user friendliness
between automatic tactics in Coq-based verifiers (like CFML, Ynot or Bedrock) and the
(semi-)automation provided by dedicated tools (like jStar, VeriFast and Crowfoot), respec-
tively, is difficult and beyond the scope of this article. It is subject to further research. One
point is obvious though, all Coq extensions automatically have access to a second order
assertion logic which the stand-alone systems do not have or have only in a weak sense12.

7.1 Stand-Alone Systems Following in the Footsteps of Smallfoot

VeriFast The system most closely related to Crowfoot is the VeriFast [29, 30] tool, also
based on symbolic execution with separation logic. VeriFast supports a C-like language (and
also Java) and supports C-style function pointers. Functions in the C-like language live in
an immutable memory and can be pointed to but not updated, whereas Crowfoot’s program-
ming language stores procedures in dynamic, mutable memory. However these setups seem
to have a similar character.

A key difference is that while Crowfoot uses nested triples to express requirements for
procedure pointers, VeriFast expresses such requirements via function types with which the
C type system is extended. A function type declaration associates a pre- and postcondition
with the function type; the declared type can have extra arguments to simulate nested triples
which can contain free variables. These can be recursive since for every function type F

there is a predicate ‘is F ()’ which states that (the function pointed to by) its first argument
satisfies the “contract” for function type F (possibly with additional arguments).

The presented tool also offers some features which VeriFast does not, such as partial
application of which our example makes essential use in useFib when loading the memoiser
mem. Another important feature to support stored procedures is entailment between Hoare
triples which is automated in our verifier and needed in our example, as explained in Sec-
tion 6.5. VeriFast does not support such proofs (which in that system would be proofs of
entailments of shape is F() ⇒ is G()), even manual ones, whereas Crowfoot finds them

12In Crowfoot we can quantify over predicates but only on the outermost level ie. we cannot substitute
predicate variables.

B. Reus et al.

automatically. Crowfoot supports annotations for deep frame rule application and allows
extensions of (recursive) predicates, thus allowing elegant use of deep framing on recur-
sively defined specifications (cf. definition of $S in our example in Fig. 4). In VeriFast one
can simulate the effect of the deep frame rule by using (second order) function types which
take as argument a predicate representing the deeply framed invariant. However, this means
one must write all specifications that can appear for stored procedures a priori in that style.

On the other hand, VeriFast offers features that Crowfoot does not, such as concurrency,
termination checking and the use of more types (such as mathematical lists and functions
on them) in the assertions. VeriFast’s support for second order logic is useful for specifying
and reasoning about higher-order and polymorphic functions.

7.2 Shallow Embeddings in Coq

There exist a number of verification systems for higher-order store based on separation logic
that have been developed in Coq: XCAP [33] a logic for assembly code, Bedrock [18] which
provides significant automation for the XCAP logic, GCAP [10], an extension of XCAP for
self-modifying code, CFML [12], a tool for verifying ML functions including references
using characteristic functions, Ynot [32] implementing Hoare Type Theory as a Coq library
with some efficient Coq tactics added in [19].

XCAP/GCAP Both systems have been developed to prove correctness of assembly pro-
grams. In contrast to the Crowfoot logic, which supports a high-level C-like language, the
CAP (certified assembly programs) approach is intensional. This means that assembly code
is syntactically saved as first-order data in the store, so that it can be manipulated and (par-
tially) overwritten. The Crowfoot language treats code extensionally, and therefore code can
only be stored or invoked. Since the stored procedures can have arguments, their invocation
allows a form of code configuration through their actual parameters. Code manipulation is
limited by those features. This resembles the extended CAP approach, XCAP [33], that uses
embedded code pointers. Modularity is achieved by adding new syntax for propositions,
cptr(f,a), expressing that precondition a holds for the code at label f. The interpretation of
this new assertion syntax is only ever done when the entire program and its code labels are
known. When proving correctness locally one only uses implications between assertions, a
kind of relative correctness. In Crowfoot, modularity is ensured by using nested triples and
procedures with arguments can be stored on the heap as a high-level language is used.

The “general” CAP approach, GCAP, drops “the assumption that code memory is fixed
and immutable” [10] to support code generation and manipulation. The framework is
platform independent using a General Target Machine that can be instantiated easily by
specifying the intended operational semantics. The intensional descriptions of code blocks
themselves have to be added to the assertions in program specifications. This approach is
again based on the intensional representation of code and provides great flexibility. During
verification, one has to keep carrying around the code block descriptions used for updates. It
is pointed out that this “does not compromise modularity, since the code is already present”
[10]. Correspondingly, code specifications map code blocks to assertions.

By contrast, Crowfoot code is always described by Hoare triples, the intensional rep-
resentation is forgotten. The flexibility of updating code (and its specification) is ensured
by the feature of nested Hoare triples that can express what specification a code pointer is
supposed to satisfy in another procedure’s pre- or postcondition.

Both program logics have been proved sound. While inductive techniques traditionally
used with operational semantics are employed for XCAP/GCAP, the Crowfoot soundness

Symbolic Execution Proofs for Higher Order Store Programs

proof makes use of a hybrid semantics where a standard operational programming lan-
guage semantics is in use but a rather sophisticated interpretation of assertions using Kripke
semantics combined with step-indexing.

Bedrock is a Coq framework that supports mostly-automated XCAP proofs. This provides
semi-automated proofs with hints and achieves something very similar to what Crowfoot
offers. In both systems automation makes use of simplification of assertions, automatic
unfolding of predicates where possible, and cancellation of spatial conjuncts until only a
pure fact remains. In Bedrock this is all implemented with the help of Coq’s Ltac tactical
language, a domain-specific language for proof-search. Bedrock is platform-independent
and supports the XCAP logic, ie. embedded code pointers but not the more involved GCAP
logics for self-modification.

CFML supports the verification of (a subset of) Caml programs using the Coq proof
assistant. Caml programs are higher-order functional programs with general references.
Therefore CFML supports higher-order store. CFML works slightly differently from other
verifiers in the sense that it builds a characteristic formula for the given Caml program that
is then used in the proof. This approach follows ideas as presented in [26]. The characteristic
formula of a program term is a proposition expressed in higher-order logic that describes the
semantics of Hoare triple for this term (where pre- and post-condition are given as param-
eters) without referring to the program syntax itself. It describes the axiomatic semantics
of the program term in purely logical form. The characteristic formula of a given program
applied to the pre- and post-condition of a given specification can then be proved in Coq
using logical means provided that separation logic has been embedded shallowly to describe
heaps 13 and program values are reflected in the logic (which is non trivial for functions).
A set of Coq tactics have been developed and where hints are necessary the proof has to be
carried out interactively. This approach is only limited by the expressiveness of the theorem
prover used (here Coq) and a relative completeness theorem has been shown which is one
particular bonus of using characteristic formulae.

Ynot [32] is an axiomatic extension to Coq’s type theory in which Hoare triples (“Hoare
types”) can be used as the types for side-effecting commands; these Hoare types can be
nested. Mixing Hoare triples with types permits the inclusion of Hoare specifications in
abstract data types and thus elegant modular specification of imperative higher-order pro-
grams. Hoare Type Theory does not support recursion through the store set up on the fly as
discussed in [32][Section 9] but admits predefined knots in the store with the help of recur-
sive specifications. In Crowfoot we do not have this restriction but we also do not have a
built-in type theory. Types in Crowfoot must be explicitly described as predicates. Improved
tactics for Hoare Type Theory in Coq based on Ltac have been implemented in [19].

8 Crowfoot Usability Report

An interactive version of Crowfoot can be used online [1], which includes the example of
this paper. Additionally, our earlier work describes several other applications of the logic:

1. verification of runtime code updates [13]

13The Conjunction rule is not needed here, nor is it in Crowfoot.

B. Reus et al.

2. verification of a program that evaluates expressions in a binary tree [16]
3. verification of an instance of the reflective visitor pattern [28]
4. verification of a higher-order list search algorithm (online example)
5. verification of an updatable login server (online example)
6. inspired by media players, verification of a program that allows user triggered load-

ing/unloading of plugins (online example)

We’ll now briefly discuss our practical experiences.
The Crowfoot tool was developed incrementally, adding new language and verification

features, and improving automation as warranted by the increasing complexity of examples.
In terms of automation, the provision of hints are the main manual burden. Because the

verification is not interactive, a degree of prescience is required in order to ensure required
predicate fold/unfold instructions take place at the correct point in the proof tree. This should
be fairly intuitive for the same human verifier who constructed the definitions of predicates.
A difficulty arises however when there is a choice for unfolding/folding a predicate, requir-
ing predicate arguments to be provided in the annotations. In the event that these variables
have been skolemized, it will not be easy to know the actual variable name until attempting
to verify the program.

A problem that is specific to the higher-order store class of programs, particularly recur-
sive ones, is that an eval command may need to unfold predicates in order to expose the
specification of the code. Whilst the tool will automatically start unfolding predicates if the
contents of the address is not accessible, this blind searching will slow verification time in
cases where there are many predicates instances. The alternative is to provide the “lookup”
hints as discussed in Section 6.6.1.

These drawbacks can be overcome to some extent by the graphical visual output that
Crowfoot produces. This output represents the proof tree and, if the automatic proof failed,
it is highlighted where in the tree the proof got stuck. In most cases the problem is trivially
identified – be it from a missing predicate unfold or an incompatible specification.

One of the limitations that can arise during checking of entailments, particularly when
assertions contain complex set expressions, is that the SMT-solver is unable to decide pure
assertions before a reasonable timeout. It is not the case that all entailments sent to the
solver are expected to be correct, because the existential variable instantiation can choose
the wrong variables on the first attempt. If the SMT solver timeout was globally extended,
then the total verification time would be vastly increased. Therefore it can be desirable to
have variable timeouts. For instance, the symbolic execution of a procedure call may require
showing the entailment of a complex pre-condition and the SMT solver may need 200ms.
However a simple dereferencing operation may succeed in under 50ms.

An approach that is often necessary for complex inductive proofs or pure entailments that
stretch the SMT solvers’ capabilities is to use lemmas in the form of auxiliary procedure
calls. This approach is also used by VeriFast. As discussed in Section 6.6.1, if a procedure
is defined using only ghost statements or skip, then an implication has been proved between
the pre- and post-condition. The use of lemmas has been explored in more detail in the
extensions presented in [27].

The verification of more complex programs, where the symbolic state contains a large
number of distinct variables, can have a significant cost in terms of verification time. This
is because of the simple heuristic decisions that are made by Crowfoot for instantiating
existentially quantified variables, and the possibility of backtracking. The chance of the
correct variable being chosen will be rare if the more intelligent instantiation rules do not
apply.

Symbolic Execution Proofs for Higher Order Store Programs

There is scope for improving the level of automation, and also the efficiency of the
verification. Predicates could be intelligently unfolded/folded by the system. For instance
when a post-condition includes a predicate instance that is not present in the state after
symbolic execution, the prover could try to fold. Additionally, if a program statement uses
a variable that appears in the arguments of a predicate instance, and the symbolic execution
gets stuck, that predicate instance could be unfolded.

The available configurations of hints cover most of the cases where the entailment prover
may need to “guess” instantiations for existentially quantified variables. The exception is
at the point when the symbolic execution of a procedure has completed and the symbolic
heap is checked against the post-condition. It would be trivial to extend the current sys-
tem of hints to allow the guiding of the instantiation of existential variables in the post-
condition.

9 Future Work

The following extensions would permit the verification of more examples. Firstly, as the
antiframe rule is consistent with the logic used here (as proved in [42]), annotations simi-
lar to those for the deep frame rule could be implemented to allow hiding of invariants in
“antiframe style”. Although we do not need it for deep framing like VeriFast does, second
order logic would support the specification of parametric procedures. A minor but useful
extension is to allow proper functions with result values. The already quite general Lemma 7
can be generalised to support mutually recursive definitions and to allow deep framing
onto abstract (universally quantified) predicates. To achieve this, for each abstract predicate
P one can also define another abstract predicate P⊗� with a corresponding equivalence
∀x,α. P(x;α)⊗� ⇔ P⊗�(x;α). There is scope for improving the efficiency of the auto-
mate procedure regarding disjunctions, see e.g. [22]. Some support for the “magic wand”
could simplify the verification of programs that manipulate more complex data structures
like e.g. trees. Some suggestions and ideas have been proposed recently in [9, 31, 39]. A
semantic checker could be added that verifies that a recursive predicate declaration is actu-
ally an instance of a pattern that guarantees the predicate’s existence. Such a pattern is
described in [16].

Finally, there are some possible enhancements relating to hints. Firstly, it is likely that
many fold/unfold annotations can be discovered automatically, as done in [17]. Next, in
addition to the advanced hints in Section 6.6 that were introduced to support verification
of reflective programs, we plan to investigate what further extensions are required to sup-
port reasoning about more features of reflection. Lastly, looking at hints in a more general
sense, the need for advanced hints discussed in Section 6.6 suggests that a more concep-
tual approach regarding user interaction (ghost statements) in entailment proofs might be
beneficial. For instance, one could provide “hooks” in all entailment based algorithms for
explicit folding/unfolding, splitting, and lemma application. Alternatively, one could try to
embed our logic in an existing theorem prover and define tactics (or tacticals) correspond-
ing to our proof search algorithms. This would automatically provide flexibility regarding
extensions with new advanced hints.

In terms of reducing the burden on the human verifier, it may be desirable to integrate
some form of invariant and specification synthesis to alleviate the need to provide loop
invariants and pre- and post-conditions. It would be interesting to explore whether tech-
niques such as “shape analysis”, which have already been demonstrated to lend themselves
to separation logic [11, 20], still apply in a higher-order store environment. In particular,

B. Reus et al.

whether one can automatically infer the “deepframe” invariants that currently must be
provided to call and code-store commands.

Acknowledgments We would like to thank the anonymous referees for their helpful suggestions and
comments. This research has been sponsored by the Engineering and Physical Sciences Research Coun-
cil, grant EP/G003173/1: “From Reasoning Principles for Function Pointers To Logics for Self-Configuring
Programs”.

Appendix

In the Appendices we present a collection of all the rules used (and not always discussed
in the main text) as well as selected soundness proofs of Crowfoot’s proof search rules in
terms of the “core” Hoare rules of the logic for higher-order store.

A Core Rules

A.1 Rules for Hoare Triples

A.1.1 Syntax Driven Rules for Triples

For the sake of brevity, we often drop the contexts
 and/or �, resp., where they do not
play any role.

ASSIGN

{P } x := e
{∃x′ . x = e[x\x′] � P [x\x′]}

LOOKUP{
P � eA �→ e′

}
x := [eA]

{∃x′ . x = e′[x\x′] � (eA �→ e′)[x\x′] � P [x\x′]}

HEAP-ASSIGN

{e �→ } [eA] := e′
{
eA �→ e′

}

HEAP2HEAP-ASSIGN{
e �→ C � e′ �→ } [eA] := [e′A]

{
eA �→ C � e′A �→ C

}

NEW DISPOSE

{P } x := new e
{∃x′ . x �→ e[x\x′] � P [x\x′]} {eA �→ } dispose eA {emp}

CALL

 �� (∀y. {A} k(p) {B}) ⇒ {P } k(eV) {Q}

;�, {A}F(p) {B} �� {P } call F(eV) {Q}y = fv(A, p, B) k fresh

EVAL SKIP
P⇒eA �→{P }·(eV){Q}�true

{P }eval [eA](eV){Q} {P } skip {P }

STOREPROC

{A}F(p) {B} �� {eA �→ } [eA] :=F(t)
{
eA �→ (∀p|U , y. {A} · (p|U) {B}) [p|I\U\t|I\U]

}

Symbolic Execution Proofs for Higher Order Store Programs

where |t| = |p| and ti either value expression ai or ; y = fv(A,B)− p;

p = (pi)i∈I ; U = {i ∈ I | ti = } p|X = (pi)i∈I∩X

SCOMP

;	 �� {P }C1 {R}
;	 �� {R}C2 {Q}

;	 �� {P }C1;C2 {Q}

IF

;	 �� {P ∧ eV = e′V
}
C1 {Q}
;	 �� {P ∧ eV �= e′V

}
C2 {Q}

;	 �� {P } if eV = e′V then C1 else C2 {Q}

WHILE1 WHILE2

;	 �� {I ∧ eV = e′V

}
C {I }

;	 �� {I }while eV = e′V do C
{
I ∧ eV �= e′V

}
;	 �� {I ∧ eV �= e′V
}
C {I }

;	 ��{I }while eV �= e′V do C
{
I ∧ eV = e′V

}

A.1.2 Non-Syntax Driven Rules for Triples

DISJUNCTION-PRECOND

;	 �� {P1}C {Q}
;	 �� {P2}C {Q}

;	 �� {P1 ∨ P2}C {Q}

SKOLEMIZE FALSE

;	 �� {P [v\v0]}C {Q} ⇒ {∃v.P }C {Q} v0 is fresh {false}C {Q}

SHALLOWFRAME

;	 �� {P }C {Q}

;	 �� {P � R}C {Q � R} mod(C) ∩ fv(R) = ∅

A.1.3 Rules that use Predicate or Procedure Declaration Context

CONSEQUENCE

;	 �� {P ′}C
{
Q′}

;	 �� {P }C {Q}
 �� P ⇒ P ′ and
 ��Q′ ⇒ Q

DEEPFRAME

;	, {P }F(p) {Q} , {P ◦�}F(p) {Q ◦�} �� B

;	, {P }F(p) {Q} �� B

A.2 Rules for Entailments Between Assertions

For the sake of brevity, instead of
 � A ⇒ B we simply write A ⇒ B where
 does not
play any role (and analogously for ⇔ and ⇐).

B. Reus et al.

A.2.1 Separation Logic Axioms

�-COMMUTATIVE �-ASSOCIATIVE emp-UNIT

A ∗� ⇔ � ∗ A A ∗ (B ∗�) ⇔ (A ∗ B) ∗� A ∗ emp ⇔ A

�-MONOTONICITY ∃-∗DISTRIBUTION

 � � ⇒ �

 � � � A ⇒ � � A
(∃v.�) � � ⇔ ∃v.(� � �) if v is not free in �

�→-GROUP

 � eA �→ C1, . . . ,Cn ⇔ eA �→ C1 � eA + 1 �→ C1 � . . . � eA + n− 1 �→ Cn

PURIFY CLOSURE

� ⇔ purify(�) � � � ⇔ closure(�)

�-SPLITPURELEFT �-SPLITPURERIGHT

A � � ⇒ A if � is pure A ∧ (true � �) ⇒ A � � if � is pure

A.2.2 Distribution Laws for Deep Framing

⊗-TRIPLE

{P } e(e) {Q} ⊗ R ⇔ {P ◦ R} e(e) {Q ◦ R}

⊗-CONNECTIVES

(P ⊕Q)⊗ R ⇔ (P ⊗ R)⊕ (Q⊗ R) where ⊕ ∈ {∨, �}

⊗-QUANTORS

(κv.P)⊗ R ⇔ κv.(P ⊗ R) where κ ∈ {∀, ∃}, provided v not free in R

◦-DEFINITION

(P ◦ R) ⇔ (P ⊗ R) � R

The following rule is used to prove the Plotkin Lemma needed to show Lemma 7 and
Lemma 8.

RUNIQUE

∀y. (R[X\P])(y) ⇔ P(y) ∀y. (R[X\Q])(y) ⇔ Q(y)

P(y) ⇔ Q(yz)

where R is an assertion with a free predicate variable X (used with the appropriate arity)
from the pattern as described in [16] (so in particular it cannot be X itself) that guarantees
that R has a fixpoint.

A.2.3 Rules that use Predicate Declaration Context

PREDLEFT PREDRIGHT

∀y.
, (X(y) ⇔ P) �� P ⇒ X(y)
, (X(y) ⇔ P) �� X(y) ⇒ P

Symbolic Execution Proofs for Higher Order Store Programs

A.2.4 Inductive Rules for Inductive Predicates

LISTINDUCTION

recdef L(s, t, α) := Q ∈ LsegDefn(n, v, [C1, . . . ,CM], [A1, . . . , AN], [E1, . . . , Ek])

, (L(s, t, α) ⇔ Q) �� s = t � α = ∅ ⇒ P

, (L(s, t, α) ⇔ Q) ��
(

P [s, α\n, β] � s �→ C1, . . . ,CM, n �
A1 � · · · � AN � α = {(E1, . . . , Ek)} ∪ β

)
⇒ P

, (L(s, t, α) ⇔ Q) �� L(s, t, α) ⇒ P
n, v, β /∈ fv(P)

JOIN

recdef L(s, t, α) := P ∈ LsegDefn(n, v, [C1, . . . ,CM], [A1, . . . , AN], [E1, . . . , Ek])

, (L(s, t, α) ⇔ P) �� L(e1, e, eα) � L(e, e2, eβ) ⇒ L(e1, e2, eα ∪ eβ)

SPLIT

recdef L(s, t, α) := P ∈ LsegDefn(n, v, [C1, . . . ,CM], [A1, . . . , AN], [E1, . . . , Ek])

, (L(s, t, α) ⇔ P) �� (e1, . . . , ek) ∈ êγ � L(ê1, ê2, êγ) ⇒

∃s, n, v, α, β.

⎛
⎜⎜⎜⎜⎜⎜⎝

L(ê1, s, α)

� s �→ C1, . . . ,CM, n

� A1 � · · · � AN

� L(n, ê2, β)

� êγ = α ∪ {(e1, . . . , ek)} ∪ β

� E1 = e1 � · · · � Ek = ek

⎞
⎟⎟⎟⎟⎟⎟⎠

Let us prove soundness of the SPLIT rule. We will prove the particular case where E1 is
the variable s used as the address of the first list node in the segment, which ensures that L
is splittable. Other cases are similar.

Proof We use the (LISTINDUCTION) rule, taking P to be

(e1, . . . , ek) ∈ α ⇒

∃a, n, v, α1, α2.

L(s, a, α1)

� a �→ C1, . . . ,CM, n

� A1 � · · · � AN

� L(n, z, α2)

� α = α1 ∪ {(e1, . . . , ek)} ∪ α2
� E1 = e1 � · · · � Ek = ek

(20)

Thus for the “base case” we need to prove

, (L(s, t, α) ⇔ Q) �� s = t � α = ∅ ⇒

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(e1, . . . , ek) ∈ α ⇒

∃a, n, v, α1, α2.

L(s, a, α1)

� a �→ C1, . . . ,CM, n

� A1 � · · · � AN

� L(n, z, α2)

� α = α1 ∪ {(e1, . . . , ek)} ∪ α2
� E1 = e1 � · · · � Ek = ek

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

B. Reus et al.

which is easily seen to hold because α = ∅ together with (e1, . . . , ek) ∈ α is inconsistent.
Then for the inductive case we need to show

, (L(s, t, α) ⇔ Q)��

P [s, α\n, β]
� s �→ C1, . . . ,CM, n

� A1 � · · · � AN

� α = {(E1, . . . , Ek)} ∪ β

⇒

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(e1, . . . , ek) ∈ α ⇒

∃a, n, v, α1, α2.

L(s, a, α1)

� a �→ C1, . . . ,CM, n

� A1 � · · · � AN

� L(n, z, α2)

� α = α1 ∪ {(e1, . . . , ek)} ∪ α2

� E1 = e1 � · · · � Ek = ek

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

which amounts to

, (L(s, t, α) ⇔ Q)��
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
s= t � α=∅ ∨

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∃n, v, β .

s �→ C1, . . . ,CM, n

� A1 � · · · � AN

� P(n, t, β)

� α = {(E1, . . . , Ek)} ∪ β

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
[s, α\n, β]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

� s �→ C1, . . . ,CM, n

� A1 � · · · � AN

� α = {(E1, . . . , Ek)} ∪ β

� (e1, . . . , ek) ∈ α

⇒

∃a, n, v, α1, α2.

L(s, a, α1)

� a �→ C1, . . . ,CM, n

� A1 � · · · � AN

� L(n, z, α2)

� α=α1 ∪ {(e1, . . . , ek)}∪ α2

� E1=e1 � · · · � Ek=ek

A.2.5 Rules for Entailment Between Behavioural Specifications

Where these rules do not require
 it will be omitted.

SHALLOWFRAMEPROCEDURES CONSEQUENCEPROCEDURES

{P } k(eV) {Q} ⇒ {P � R} k(eV) {Q � R}
 �� P ⇒ P ′
 ��Q′ ⇒ Q

 �� {P ′} k(eV) {Q′} ⇒ {P } k(eV) {Q}

DISJUNCTION

 �� A ⇒ {P1} k(eV) {Q}
 �� A ⇒ {P2} k(eV) {Q}

 �� A ⇒ {P1 ∨ P2} k(eV) {Q}

SKOLEM

{�[v\v0]} k(eV) {Q} ⇒ {∃v.�} k(eV) {Q} v0 fresh

Symbolic Execution Proofs for Higher Order Store Programs

B Symbolic Execution Rules

B.1 Atomic Statements

ASSIGN

;	 � {x = ev[x\x′] � ϒ[x\x′]}C {Q}

;	 � {ϒ} x := ev; C {Q} x′ fresh

LOOKUP

purify(ϒ) �SMT EA = (e′A + o)

;	 � {x = (eV [x\x′]) � (ϒ � eA �→ C0, . . . ,Co−1, eV ,Co+1, . . . ,Cn)[x\x′]
}
C {Q}

;	 � {ϒ} � {e}′A �→ C0, . . . ,Co−1, eV ,Co+1, . . . ,Cnx := [EA]; CQ
x′ fresh

MUTATE

purify(ϒ) �SMT EA = (e′A + o)

;	 � {ϒ � e′A �→ C0, . . . ,Co−1, x,Co+1 . . . ,Cn

}
C {Q}

;	 � {ϒ � e′A �→ C0, . . . ,Cn

} [EA] := x; C {Q}
COPY

purify(ϒ) �SMT E1 = (eA + o) purify(ϒ) �SMT E2 = (e′A + o′)

;	 �
{

eA �→ C0, . . . ,Co−1,C
′
o′ ,Co+1, . . . ,Cm �

e′A �→ C ′
0, . . . ,C

′
n � ϒ

}
C
{

Q
}

;	 �
{

eA �→ C0, . . . ,Cm �

e′A �→ C ′
0, . . . ,C

′
n � ϒ

}
[E1] := [E2]; C

{
Q
} 0 ≤ o ≤ m, 0 ≤ o′ ≤ n

NEW

;	 � {ϒ[x\x′] � x �→ (e0, . . . , en)[x\x′]
}
C {Q}

;	 � {ϒ} x := new e0, . . . , en; C {Q} x′ fresh

DISPOSE

purify(ϒ) �SMT eA = (e′A + o)
;	 �
{

ϒ � G �→ C0, . . . , Co−1 �

(e′A + o+ 1) �→ Co+1, . . . , Cn

}
C
{

Q
}

;	 � {ϒ � e′A �→ C0, . . . , Cn

}
dispose eA; C {Q}

0 ≤ o ≤ n

CALL

(∀a. {P } · (t) {Q}) [b\y] ⊗� �find-post {ϒ} · (t′)
{

m∨
i=1

∃vi .�

}

; ∀a, b. {P }F {(} t)Q,	 �
{

m∨
i=1

�[vi\]v′i
}

C {Q}′

; ∀a, b. {P }F(t) {Q} , 	 � {ϒ} call F(t′) ‘b = y’ deepframe �; C {Q}′ v′i fresh

B. Reus et al.

Symbolic Execution Proofs for Higher Order Store Programs

B.2 Ghost Statements

B.3 Extraordinary Rules

DISJ

;	 � {�1}C {Q} · · ·
;	 � {�n}C {Q}

;	 � {�1 ∨ · · · ∨�n}C {Q}

SKIP2 INCONS

ϒ �I ∃w.�i[vi\w] � �pure

{ϒ} skip {∃v1.�1 ∨ . . . ∨ ∃vn.�n}w fresh
purify(closure(ϒ)) �SMT false

{ϒ}C {Q}

ADDSKIP

;	 � {ϒ}C ; skip {Q}

;	 � {ϒ}C {Q} C is not a sequential composition

B. Reus et al.

C Soundness of Symbolic Execution Rules

To prove soundness of the low-level deterministic symbolic execution rules in the following
we will use the already shown sound high-level rules.

C.1 Soundness of LOOKUP

We derive the low-level lookup rule from the high-level one in Section 4. For the sake of a
simpler presentation we omit the context
;	. The low-level rule is the following:

LOOKUP

purify(P) �SMT E = (G+ o){
x = (e[x\x′]) � (P � G �→ C0, . . . ,Co−1, e,Co+1, . . . ,Cn)[x\x′]

}
C {Q}{

P � G �→ C0, . . . ,Co−1, e,Co+1, . . . ,Cn

}
x := [E]; C {Q} x′ is fresh

Proof We can assume that:

(a) x′ is fresh
(b) purify(P) �SMT E = (G+ o)

(c)
{
x = (e[x\x′]) � (P � G �→ C0, . . . ,Co−1, e,Co+1, . . . ,Cn)[x\x′]

}
C {Q}

We are then required to show that that we can derive the conclusion of the low-level rule
from the high-level axiom. With some renaming of variables (e, e′, E), and instantiating P ,
the axiom becomes:

⎧⎪⎨
⎪⎩

P � G �→ C0 � . . . �
(G+ o− 1) �→ Co−1 �
(G+ o+ 1) �→ Co+1 � . . . �
(G+ n) �→ Cn � E �→ e

⎫⎪⎬
⎪⎭

x := [E]

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∃x′. x = e[x\x′] � (E �→ e)[x\x′] �⎛
⎜⎝

P � G �→ C0 � . . . �
(G+ o− 1) �→ Co−1 �
(G+ o+ 1) �→ Co+1 � . . . �
(G+ n) �→ Cn

⎞
⎟⎠ [x\x′]

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

We use the following lemma:

Lemma 9 If purify(P) ⇒ Rpure then P ⇔ P � Rpure.

Proof This can easily be derived using (PURIFY), (�-SPLITPURELEFT) and the axioms of
Separation Logic.

Using (b), and Theorem 3 (soundness of SMT), we get:

purify(P) ⇒ E = (G+ o) (21)

providing the lhs and rhs are both pure. The left is pure by definition of purify(), and the
right is pure by definition of =.

Symbolic Execution Proofs for Higher Order Store Programs

Using (a), (c), (SKOLEM), and some renaming we get:

{
x = (e[x\x′]) � (P � G �→ C0, . . . ,Co−1, e,Co+1, . . . ,Cn)[x\x′]

}
C {Q}

rename x′ with fresh x0{
(x = (e[x\x′]) � (P � G �→ C0, . . . ,Co−1, e,Co+1, . . . ,Cn)[x\x′])[x′\x0]

}
C {Q}

SKOLEM{∃x′. x = (e[x\x′]) � (P � G �→ C0, . . . ,Co−1, e,Co+1, . . . ,Cn)[x\x′]
}
C {Q} (22)

We then reason as follows:

⎧⎪⎨
⎪⎩

P � G �→ C0 � . . . �

(G+ o− 1) �→ Co−1 �

(G+ o+ 1) �→ Co+1 � . . . �

(G+ n) �→ Cn � E �→ e

⎫⎪⎬
⎪⎭

x := [E]

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∃x′. x = e[x\x′] � (E �→ e)[x\x′] �⎛
⎜⎝

P � G �→ C0 � . . . �

(G+ o− 1) �→ Co−1 �

(G+ o+ 1) �→ Co+1 � . . . �

(G+ n) �→ Cn

⎞
⎟⎠ [x\x′]

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⇒ { Using consequence rule, Lemma 9 with (21) and (�-MONOTONICITY) }
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P � E = (G+ o) �

G �→ C0 � . . . �

(G+ o− 1) �→ Co−1 �

(G+ o+ 1) �→ Co+1 � . . . �

(G+ n) �→ Cn � E �→ e

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

x := [E]

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∃x′. x = e[x\x′] � (E �→ e)[x\x′] �⎛
⎜⎜⎜⎝

P � E = (G+ o) �

G �→ C0 � . . . �

(G+ o− 1) �→ Co−1 �

(G+ o+ 1) �→ Co+1 � . . . �

(G+ n) �→ Cn

⎞
⎟⎟⎟⎠ [x\x

′]

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

⇒ { Using consequence rule and lemma for structural definition of substitution }
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P � E = (G+ o) �

G �→ C0 � . . . �

(G+ o− 1) �→ Co−1 �

(G+ o+ 1) �→ Co+1 � . . . �

(G+ n) �→ Cn � E �→ e

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

x := [E]

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∃x′. x = e[x\x′] �⎛
⎜⎜⎜⎝

P � E = (G+ o) �

G �→ C0 � . . . �

(G+ o− 1) �→ Co−1 �

(G+ o+ 1) �→ Co+1 � . . . �

(G+ n) �→ Cn � E �→ e

⎞
⎟⎟⎟⎠ [x\x

′]

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

⇒ { Using consequence rule, and substitution with E = G+ o }
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P � E = (G+ o) �

G �→ C0 � . . . �

(G+ o− 1) �→ Co−1 �

(G+ o+ 1) �→ Co+1 � . . . �

(G+ n) �→ Cn � (G+ o) �→ e

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

x := [E]

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∃x′. x = e[x\x′] �⎛
⎜⎜⎜⎝

P � E = (G+ o) �

G �→ C0 � . . . �

(G+ o− 1) �→ Co−1 �

(G+ o+ 1) �→ Co+1 � . . . �

(G+ n) �→ Cn � (G+ o) �→ e

⎞
⎟⎟⎟⎠ [x\x

′]

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

⇒ { Using consequence rule, Lemma 9 with (21) and (�-MONOTONICITY) }
⎧⎪⎨
⎪⎩

P � G �→ C0 � . . . �

(G+ o− 1) �→ Co−1 �

(G+ o+ 1) �→ Co+1 � . . . �

(G+ n) �→ Cn � (G+ o) �→ e

⎫⎪⎬
⎪⎭

x := [E]

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∃x′. x = e[x\x′] �⎛
⎜⎜⎜⎝

P � G �→ C0 � . . . �

(G+ o− 1) �→ Co−1 �

(G+ o+ 1) �→ Co+1 � . . . �

(G+ n) �→ Cn �

(G+ o) �→ e

⎞
⎟⎟⎟⎠ [x\x

′]

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

⇒ { Using consequence rule and (�→-GROUP) }
{

P � G �→ C0, . . . ,Co−1, e,

Co+1, . . .Cn

}
x := [E]

⎧⎨
⎩
∃x′. x = e[x\x′] �(

P � G �→ C0, . . . ,Co−1, e,

Co+1, . . .Cn

)
[x\x′]

⎫⎬
⎭

⇒ {Using sequential composition and (22)}{
P � G �→ C0, . . . ,Co−1, e,Co+1, . . . ,Cn

}
x := [E]; C {Q}

B. Reus et al.

C.2 Soundness of EVAL-Rules

We show that the implemented unguided rule EVALUNGUIDED can be derived from the
high-level (EVAL). Again for the sake of a simpler presentation we omit the context
;	.
The low-level rule is as follows:

Proof We can assume that:

(a) v′i and w are fresh
(b) ϒ �find-tr ∃x. eA �→ ∀a. {P } · (t) {Q} � Rpure

(c) ∀a. {P } · (t) {Q} [u\w] �find-post {ϒ � Rpure[x\w]} · (t′)
{

m∨
i=1

∃vi .�i

}

(d)
;	 �
{

m∨
i=1

�i[vi\v′i]
}

C
{
Q′}

By applying (SKOLEM) to (d) (using assumption (a)), we get:
{

m∨
i=1

∃vi. �i

}
C
{
Q′} (23)

By soundness of �find-tr and (b), we get:

ϒ ⇒ ∃u. eA �→ ∀a. {P } · (t′) {Q} � Rpure � P ′′ (24)

for some P ′′.
By soundness of �find-post and (c), we get:

(∀a. {P } k(t) {Q}) [x\w] ⇒ {
ϒ � Rpure[x\w]} k(t′)

{
m∨

i=1

∃vi . �i

}
(25)

for some fresh variable k.
To derive our low-level rule, we use the following instance of the high-level rule,

ϒ ⇒ eA �→ {ϒ} · (t′)
{

m∨
i=1

∃vi . �i

}
� true

{ϒ} eval [eA](t′)
{

m∨
i=1

∃vi . �i

}

Symbolic Execution Proofs for Higher Order Store Programs

We now proceed to show that the premise holds:

ϒ

⇒ { By (24) }
∃u. eA �→ ∀a. {P } · (t′) {Q} � Rpure � P ′′

⇒ {By (SKOLEM) }
eA �→ ∀a. {P } · (t′) {Q} [u\w] � Rpure[u\w] � P ′′[u\w]

⇒ { By (25) and (�-MONOTONICITY) }

eA �→ ∀a.
{
ϒ � Rpure[x\w]} · (t′)

{
m∨

i=1

∃vi . �i

}
� Rpure[x\w] � P ′′[u\w]

⇒ { By property of true and (�-MONOTONICITY) }

eA �→ ∀a.
{
ϒ � Rpure[u\w]} · (t′)

{
m∨

i=1

∃vi . �i

}
� true

⇒ { By (CONSEQUENCE), and ϒ ⇒ ϒ � Rpure[u\w] as shown separately }

eA �→ ∀a. {ϒ} · (t′)
{

m∨
i=1

∃vi . �i

}
� true

We still need to show ϒ ⇒ ϒ � Rpure[u\w]. From (24) we can derive that ϒ ⇒
∃u. Rpure � true and so by skolemisation ϒ ⇒ Rpure[u\w] � true as w is fresh. By
(�-SPLITPURERIGHT) one obtains the desired result.

We thus get by the high-level (Eval) rule instantiated as shown above:

{ϒ} eval [eA](t′)
{

m∨
i=1

∃vi . �i

}

⇒ {Using sequential composition (SCOMP) and (23)}
{ϒ} eval [eA](t′); C

{
Q′}

C.3 Soundness of Guided Eval

We now show that the Eval rule, with full hints, is sound. The rule is as follows:

B. Reus et al.

Proof We can assume that:

(a) x′, v′i, w′
i fresh

(b) L is a lemma
(c)
 : ϒ �G

find-tr ∃x. E �→ ∀a, b. {P } · (t) {Q} � Rpure

(d) (∀p. {A} · (s) {B}) [q\E] �find-post
{
ϒ � Rpure[y\y′]} · (s′)

{
n∨

i=1
∃wi .�i

}

(e) purify(closure(�i[wi\w′
i])) �SMT false for all i �= k

(f) (∀a. {P } · (t) {Q}) [y\y′][b\e] �find-post
{
�k[wk\w′

k]
} · (t′)

{
m∨

i=1
∃vi .�i

}

(g)
; ∀p, q. {A}L(s) {B} , 	 �
{

m∨
i=1

�i[vi\v′i]
}

C
{
Q′}

By soundness of �find-tr and (c), we get:

ϒ ⇒ ∃y. E �→ ∀a, b. {P } · (t) {Q} � Rpure � ϒ ′ for someϒ ′ (26)

By soundness of �find-post and (d), we get:

(∀p. {A} k(s) {B}) [q\E] ⇒ {
ϒ � Rpure[y\y′]} k(s′)

{
n∨

i=1

∃wi .�i

}
(27)

for a fresh k.
By Theorem 3 (soundness of �SMT) and (e), we get:

purify(closure(�i[wi\w′
i])) ⇒ false for all i �= k

which, by Lemma 11 gives:

�i[wi\w′
i] ⇒ false for all i �= k (28)

By soundness of �find-post and (f), we get:

(∀a. {P } · (t) {Q}) [y\y′][b\e] ⇒ {
�k[wk\w′

k]
} · (t′)

{
m∨

i=1

∃vi .�i

}
(29)

By soundness of our symbolic execution rules and (g), we get:

; ∀p, q. {A}L(s) {B} , 	 |=
{

m∨
i=1

�i[vi\v′i]
}

C
{
Q′} (30)

We prove this rule using the following instance of rule (EVALUNGUIDED) already
proved sound in the previous subsection.

Because the annotations have no computational effect, the conclusions are identical.
We then must prove that the premises hold:

Symbolic Execution Proofs for Higher Order Store Programs

(a’)
 : ϒ ⇒ eA �→ ∀a, b. {P } · (t) {Q} � Rpure � ϒ ′

(b’) ∀a, b. {P } · (t) {Q} [y\y′] ⇒ {
ϒ � Rpure[y\y′]} · (t′)

{
m∨

i=1
∃vi .�i

}

(c’)
; ∀p, q. {A}L(s) {B} , 	 |=
{

m∨
i=1

�i[vi\v′i]
}

C
{
Q′}

We have (a’) from (26). We have (c’) from (30). This leaves us to show that (b’) holds.
We’ll use this lemma:

Lemma 10 ϒ � Rpure[y\y’] ⇒
n∨

i=1
∃wi .�i

Proof From the procedure context of our assumptions, we have

∀p, q. {A}L(s) {B}
which, by universal instantiation is

∀p. {A}L(s) {B} [q\E]
By the fact that lemma specifications hold for skip, we know

∀p. {A} skip {B} [q\E]
From (27) we get,

{
ϒ � Rpure[y\y′]} skip

{
n∨

i=1

∃wi .�i

}

which by the semantic fact that {P } skip {Q} ⇐⇒ P ⇒ Q means that the lemma
holds.

We can then prove the final premise we needed (b’):

∀a, b. {P } · (t) {Q} [y\y′]
⇒ {Universal instantiation}

∀a. {P } · (t) {Q} [y\y′][b\e]
⇒ {By (29)}

{
�k[wk\w′

k]
} · (t′)

{
m∨

i=1

∃vi .�i

}

⇒ {By (CONSEQUENCEPROCEDURES) and (28)}{
n∨

i=1

�i[wi\w′
i]
}
· (t′)

{
m∨

i=1

∃vi .�i

}

⇒ {By (SKOLEMIZE) with w′
i fresh}{

n∨
i=1

∃wi .�i

}
· (t′)

{
m∨

i=1

∃vi .�i

}

⇒ {By (CONSEQUENCEPROCEDURES) and Lemma 10}
{
ϒ � Rpure[y\y′]} · (t′)

{
m∨

i=1

∃vi .�i

}

B. Reus et al.

C.4 Soundness of STORECODE

Here we prove soundness of the symbolic execution rule STORECODE (in Appendix B)
using the core rule STOREPROC (Section 4).

So let us assume that the premises and side conditions of this rule hold. In particular for
the third premise this means

;	, {P }F(p) {Q} |= {ϒ � E′ �→ C0, . . . ,Co−1, S,Co+1, . . . ,Cn

}
C
{
Q′} (31)

What we need to prove is

;	, {P }F(p) {Q} |= {ϒ � e′A �→ C0, . . . ,Cn

} [eA] := F(t); C
{

Q′ }

because the deepframe annotation has no computational effect. By the soundness of the
(SCOMP) rule and (31) it will be enough to show

;	, {P }F(p) {Q} |=
{

ϒ � e′A �→ C0, . . . ,Cn

}
[eA] := F(t){

ϒ � e′A �→ C0, . . . ,Co−1, S,Co+1, . . . ,Cn

}

By the second premise, Lemma 9 and Theorem 3 we have ϒ ⇔ ϒ � eA = e′A+o so by
soundness of (CONSEQUENCE) the above will follow from

;	, {P }F(p) {Q} |=
{

ϒ � E′ �→ C0, . . . ,Cn � eA = e′A+o
}

[eA] := F(t){
ϒ � e′A �→ C0, . . . ,Co−1, S,Co+1, . . . ,Cn � eA = e′A+o

}

The above will follow, by the soundness of (�→-GROUP) and (SHALLOWFRAME), from

;	, {P }F(p) {Q} |=
{

e′A+o �→ Co � eA = e′A+o
}

[eA] := F(t){
e′A+o �→ S � eA = e′A+o

}

By the soundness of (CONSEQUENCE) and (SHALLOWFRAME), and ϒ ⇔ ϒ � eA = e′A+o

again, the above will follow from

;	, {P }F(p) {Q} |= {eA �→ } [eA] := F(t) {eA �→ S}
By the soundness of (DEEPFRAME) the above will follow from

;	, {P ◦�}F(p) {Q ◦�} |= {eA �→ } [eA] := F(t) {eA �→ S} (32)

Symbolic Execution Proofs for Higher Order Store Programs

Take the following instance of the (STOREPROC) rule:

{P ◦�}F(p) {Q ◦�} ��
{

eA �→
}

[eA] := F(t){
eA �→ (∀p|U , y. {P ◦�} · (p|U) {Q ◦�}) [p|I\U\t|I\U]

}

But in fact, using the equation for S and the soundness of (STOREPROC), this gives us (32)
which is what we needed to prove.

C.5 Soundness of STORECODEGUIDED

Here we prove soundness of the symbolic execution rule STORECODEGUIDED (in
Appendix B) using the core rule STOREPROC (Section 4).

Due to the premises of the rule we can assume that:

(a)
 : ((�⊗∃a.ϒ ′) � ϒ ′[a\a′])[v\v′] �∅Gpre X(E) � �′
(b)
 : ((�⊗∃a.ϒ ′) � ϒ ′[a\a′])[w\w′] � emp �∅

Gpost Y (e) � �′

(c) S =
⎛
⎝ ∀p|U , y.

{ ∃v, a′. (X(E)[v\v′′] � �′)[v′\v] }
·(p|U){ ∃w, a′. (Y (e)[w\w′′] � �′)[w′\w] }

⎞
⎠

(d) purify(ϒ) �SMT eA = e′A + o

(e)
;	, {∃v.�}F(p) {∃w.�} � {ϒ � E′ �→ C0, . . . ,Co−1, S,Co+1, . . . ,Cn

}
C
{
Q′}

By soundness of �I and (a) we get:

 : ((�⊗∃a.ϒ ′) � ϒ ′[a\a′])[v\v′] ⇒ X(E) � �′
where fv(�′) ⊆ fv(((�⊗∃a.ϒ ′) � ϒ ′[a\a′])[v\v′]) (33)

By soundness of �I and (b) we get:

 : ((�⊗∃a.ϒ ′) � ϒ ′[a\a′])[w\w′] � emp ⇔ Y (e) � �′
where fv(�′) ⊆ fv(((�⊗∃a.ϒ ′) � ϒ ′[a\a′])[w\w′] � emp)

(34)

By Theorem 3 and (d) we get:

purify(ϒ) ⇒ eA = e′A + o (35)

By the soundness of our symbolic execution rules and (e) we get:

;	, {∃v.�}F(p) {∃w.�} |= {ϒ � e′A �→ C0, . . . ,Co−1, S,Co+1, . . . ,Cn

}
C
{
Q′} (36)

B. Reus et al.

We now prove that this rule can be derived from the following instance of the previous
unguided STORECODE:

Because the annotations have no computational effect, the conclusions are identical. Next
to show the premises hold:

(a’) S = (∀p|U , y.
{∃v.� ◦ ∃a.ϒ ′} · (p|U)

{∃w.� ◦ ∃a.ϒ ′}) [p|I\U\t|I\U]
(b’) purify(ϒ) ⇒ eA = e′A + o

(c’)
;	, {∃v.�}F(p) {∃w.�} |= {ϒ � e′A �→ C0, . . . ,Co−1, S,Co+1, . . . ,Cn

}
C
{
Q′}

(b’) is shown by (35), and (c’) is from (36). To show (a’) we need to show the following
implication between triples:

{ ∃v, a′. (X(E)[v\v′′] � �′)[v′\v] }
·(p|U){ ∃w, a′. (Y (e)[w\w′′] � �′)[w′\w] }

⇒
{ ∃v.� ◦ ∃a.ϒ ′ }

·(p|U){ ∃w.� ◦ ∃a.ϒ ′ }

This will follow from the soundness of (CONSEQUENCEPROCEDURES) once we show
the two premises. First we show the implication for the precondition:

 : ∃v. � ◦ (∃a.ϒ ′) ⇒ ∃v, a′. (X(E)[v\v′′] � �′)[v′\v]
This is equivalent to

∃v. � ◦ (∃a.ϒ ′) ⇒ ∃v, a′. (X(E)[v\v′′] � �′)[v′\v]
⇔ {◦-DEFINITION}

∃v. (�⊗(∃a.ϒ ′)) � (∃a.ϒ ′) ⇒ ∃v, a′. (X(E)[v\v′′] � �′)[v′\v]
⇔ { Rename bound a by a fresh a0}

∃v. (�⊗(∃a.ϒ ′)) � (∃a0.ϒ
′[a\a0]) ⇒ ∃v, a′. (X(E)[v\v′′] � �′)[v′\v]

⇔ { ∃-∗DISTRIBUTION with a0 freshness}
∃v, a0. (�⊗(∃a.ϒ ′)) � ϒ ′[a\a0] ⇒ ∃v, a′. (X(E)[v\v′′] � �′)[v′\v]

Symbolic Execution Proofs for Higher Order Store Programs

Using ∃-introduction on the left and the freshness of a′, it suffices to prove

∃v. ((�⊗(∃a.ϒ ′)) � ϒ ′[a\a0])[a0\a′] ⇒ ∃v, a′. (X(E)[v\v′′] � �′)[v′\v]

Or equivalently

∃v. ((�⊗(∃a.ϒ ′)) � ϒ ′[a\a0])[a0\a′] ⇒ ∃v, a′. (X(E)[v\v′′] � �′)[v′\v]
⇔ { Substitution distribution with a0 freshness}

∃v. (�⊗(∃a.ϒ ′)) � ϒ ′[a\a0][a0\a′] ⇒ ∃v, a′. (X(E)[v\v′′] � �′)[v′\v]
⇔ { Substitution}

∃v. (�⊗(∃a.ϒ ′)) � ϒ ′[a\a′] ⇒ ∃v, a′. (X(E)[v\v′′] � �′)[v′\v]

Which, by skolemization and the freshness of v′ leaves us to prove

((�⊗(∃a.ϒ ′)) � ϒ ′[a\a′])[v\v′] ⇒ ∃v, a′. (X(E)[v\v′′] � �′)[v′\v] (37)

This is shown below:

((�⊗(∃a.ϒ ′)) � ϒ ′[a\a′])[v\v′]
⇒ {By (33)}

X(E) � �′

⇒ {Rename v with fresh v′′}
(X(E) � �′)[v\v′′]

⇒ {Substitution distribution with v ∩�′ = ∅ (from (33))}
(X(E)[v\v′′] � �′)

⇒ {Rename a′ with a fresh a0}
(X(E)[v\v′′] � �′)[a′\a0]

⇒ {∃-introduction}
∃a′. (X(E)[v\v′] � �′)

⇒ {Rename v′ with v (v ∩�′ = ∅ (from (33)))}
∃a′. (X(E)[v\v′′] � �′)[v′\v]

⇒ {Rename v with a fresh v0}
∃a′. (X(E)[v\v′′] � �′)[v′\v][v\v0]

⇒ {∃-introduction}
∃v, a′. (X(E)[v\v′′] � �′)[v′\v]

Next, we show the entailment for the postcondition

 : ∃w, a′. (Y (e)[w\w′′] � �′)[w′\w] ⇒ ∃w.� ◦ (∃a.ϒ ′)

By skolemization and choosing a fresh a1, w1 leaves us to prove

(Y (e)[w\w′′] � �′)[w′\w][a′\a1][w\w1] ⇒ ∃w.� ◦ (∃a.ϒ ′) (38)

B. Reus et al.

This is proved below

(Y (e)[w\w′′] � �′)[w′\w][a′\a1][w\w1]
⇒ { Substitution distribution with w ∩�′ = ∅ (from (34)) }

(Y (e) � �′)[w\w′′][w′\w][a′\a1][w\w1]
⇒ { from (34) }

((�⊗∃a.ϒ ′) � ϒ ′[a\a′])[w\w′][w\w′′][w′\w][a′\a1][w\w1]
⇒ { remove redundant substitution [w\w′′] (all w have been substituted)}

((�⊗∃a.ϒ ′) � ϒ ′[a\a′])[w\w′][w′\w][a′\a1][w\w1]
⇒ { apply substitution [a′\a1] with a′ freshness (so not already appearing) }

((�⊗∃a.ϒ ′) � ϒ ′[a\a1])[w\w′][w′\w][w\w1]
⇒ { apply substitutions [w\w′][w′\w] with w′ freshness (so not already appearing) }

((�⊗∃a.ϒ ′) � ϒ ′[a\a1])[w\w1]
⇒ { ∃-introduction }

∃w. (�⊗∃a.ϒ ′) � ϒ ′[a\a1]
⇒ { ∃-introduction with �-MONOTONICITY }

∃w. (�⊗∃a.ϒ ′) � ∃a.ϒ ′

⇒ {◦-DEFINITION}
∃w. � ◦ (∃a.ϒ ′)

Thus, by applying CONSEQUENCEPROCEDURES to (c) with (37) and (38), we get (a’).

D Proofs of Soundness of Rules for Entailments Between Disjuncts

The general pattern for proving a rule

�′ �I ′ ∃v′ . � ′ � �′

� �I ∃v . � � �
S

(where the side conditions S depend only on �, v, �) is as follows.

1. Assume that fv(�) ∩ v = ∅ and assume that the side conditions S hold.

2. Prove that fv(�′) ∩ v′ = ∅.

3. Assume further that:

(a’) �′ ⇒ � ′[v′\I ′(v′)] � �′
(b’) fv(�′) ⊆ fv(�′)
(c’) dom(I ′) = v′

4. Prove that:

(a) � ⇒ �[v\I (v)] � �

(b) fv(�) ⊆ fv(�)

(c) dom(I) = v

Symbolic Execution Proofs for Higher Order Store Programs

We include three such proofs, for the rules INSTUSINGEQ, CANCELPT1 and INST-
MATCHADDR. We begin with INSTUSINGEQ.

INSTUSINGEQ

� �I ∃v . �[v\e] � �

� �I [v:=e] ∃v, v . � � v = e � �
fv(e) ∩ v, v = ∅

Proof As per 1. we can assume that fv(�) ∩ v, v = ∅ and that fv(e) ∩ v, v = ∅. For 2. we
need to prove fv(�)∩ v = ∅, which follows easily from our assumptions. As per 3. we now
assume further that:

(a’) � ⇒ �[v\e][v\I (v)] � �

(b’) fv(�) ⊆ fv(�)

(c’) dom(I) = v

and for 4. we need to prove:

(a) � ⇒ (� � v = e)[v, v\I [v := e](v, v)] � �

(b) fv(�) ⊆ fv(�)

(c) dom(I [v := e]) = v, v

(b) is exactly (b’). (c) follows from (c’). Now to show (a). The following argument shows
that (a) and (a’) are equivalent.

(� � v = e)[v, v\I [v := e](v, v)] � �

⇔ {distribute substitution over �}
�[v, v\I [v := e](v, v)] � (v = e)[v, v\I [v := e](v, v)] � �

⇔ {because fv(e) ∩ v = ∅}
�[v\e][v\I (v)] � (v = e)[v, v\I [v := e](v, v)] � �

⇔ {because fv(e) ∩ v, v = ∅}
�[v\e][v\I (v)] � e = e � �

⇔ {because e = e ⇔ emp - where does that come from?}
�[v\e][v\I (v)] � �

Next we tackle the CANCELPT1 rule.

CANCELPT1
� �I ∃v . � � �

� � eA �→ C �I ∃v . � � e′A �→ � �

fv(e′) ∩ v = ∅,
purify(�) �SMT e = e′

Proof As per 1. we can assume that fv(� � e �→ C) ∩ v = ∅, fv(e′) ∩ v = ∅, and
purify(�) �SMT eA = e′A. For 2. we need to prove fv(�) ∩ v = ∅, which follows easily
from our assumptions. As per 3. we now assume further that:

(a’) � ⇒ �[v\I (v)] � �

(b’) fv(�) ⊆ fv(�)

(c’) dom(I) = v

and for 4. we need to prove:

(a) � � eA �→ C ⇒ (� � e′A �→)[v\I (v)] � �

B. Reus et al.

(b) fv(�) ⊆ fv(� � eA �→ C)

(c) dom(I) = v

(b) follows easily from (b’). (c) is exactly (c’). Now to show (a).

� � eA �→ C

⇒ {using purify(�) �SMT eA = e′A and what else?}
� � e′A �→ C

⇒ {using �-MONOTONICITY to add e′A �→ C to both sides of (a’)}
�[v\I (v)] � e′A �→ C � �

⇒ {using �-MONOTONICITY and e′A �→ C ⇒ e′ �→ }
�[v\I (v)] � e′A �→ � �

⇒ {since fv(e′A) ∩ v = ∅}
�[v\I (v)] � (e′A �→)[v\I (v)] � �

⇒ {since fv(e′A) ∩ v = ∅}
�[v\I (v)] � (e′A �→)[v\I (v)] � �

⇒ {using distribution of substitution and �}
(� � e′A �→)[v\I (v)] � �

Next we prove the INSTMATCHADDR rule.

INSTMATCHADDR

� � eA �→ C �I ∃v . (� � v �→ C ′)[v\eA] � �

� � eA �→ C �I [v:=eA] ∃v, v . � � v �→ C ′ � �
backtracks

Proof As per 1. we can assume that fv(� � eA �→ C) ∩ v, v = ∅. For 2. we need to prove
fv(� � eA �→ C) ∩ v = ∅, which follows easily.

As per 3. we now assume further that:

(a’) � � eA �→ C ⇒ (� � v �→ C ′)[v\eA][v\I (v)] � �

(b’) fv(�) ⊆ fv(� � eA �→ C)

(c’) dom(I) = v

and for 4. we need to prove:

(a) � � eA �→ C ⇒ (� � v �→ C ′)[v, v\I [v := eA](v, v)] � �

(b) fv(�) ⊆ fv(� � e �→ C)

(c) dom(I [v := eA]) = v, v

(b) is exactly (b’) and (c) follows easily from (c’). The following argument shows that (a)
and (a’) are equivalent.

(� � v �→ C ′)[v\eA][v\I (v)] � �

⇔ { since fv(eA) ∩ v = ∅ which follows from fv(� � eA �→ C) ∩ v, v = ∅ }
(� � v �→ C ′)[v, v\I [v := eA](v, v)] � �

Symbolic Execution Proofs for Higher Order Store Programs

FOLDPREDRIGHT

(X(x) ⇔ (∃v1. ϒ1) ∨ . . . ∨ (∃vn. ϒn)) ∈

ϒ1[x\e][v1\d1] � � �∅ � � emp . . . ϒn[x\e][vn\dn] � � �∅ � � emp

 : X(e) � � �∅G � � emp

d1 . . . dn fresh

G = fold X()

Proof We have no existential variables, so 2. comes for free. As per 3. we now assume
further that:

(a’) ϒi[x\e][vi\di] � � ⇒ � � emp forall i ∈ {1, . . . , n}
(b’) fv(emp) ⊆ fv(ϒ1[x\e][v1\d1] � �)

(c’) dom(∅) = ∅
and for 4. we need to prove:

(a) X(e) � � ⇒ � � emp
(b) fv(emp) ⊆ fv(X(e) � �)

(c) dom(∅) = ∅
(b) and (c) holds trivially.

By skolemization from (a’) and the fact that d1, . . . , dn are fresh, and that fv(�)∩vi = ∅,
we get:

∃vi. ϒi[x\e] � � ⇒ � � emp foralli ∈ {1, . . . , n} (39)

The following argument proves (a)

X(e) � �

⇒ {PREDRIGHT with premise}
((∃v1. ϒ1) ∨ . . . ∨ (∃vn. ϒn))[x\e] � �

⇒ {Substitution distribution}
((∃v1. ϒ1[x\e]) ∨ . . . ∨ (∃vn. ϒn[x\e])) � �

⇒ {�-distribution}
(∃v1. ϒ1[x\e] � �) ∨ . . . ∨ (∃vn. ϒn[x\e] � �)

⇒ {Rewrite}
∃vi . ϒi[x\e] � � forall i ∈ {1, . . . , n}

⇒ {By (39)}
� � emp

Next we’ll do the FOLDPREDLEFT rule.

B. Reus et al.

Proof We have no existential variables in the conclusion, so we don’t need assumption 1.
For 2. we need to prove fv(�) ∩ (w, c) = ∅, which follows from side-condition (5), the
freshness of w

As per 3. we now assume further that:

(a’) � ⇒ ϒi[x\q][b\y][vi\w][w\I (w)][c\I (c)] � �

(b’) fv(�) ⊆ fv(�)

(c’) dom(I) = w, c

and for 4. we need to prove:

(a) � ⇒ X(e) � �

(b) fv(�) ⊆ fv(�)

(c) dom(∅) = ∅

(b) is exactly (b’), and (c) holds trivially. The following argument shows (a)

�

⇒ { From (a’) }
ϒi[x\q][b\y][vi\w][w\I (w)][c\I (c)] � �

⇒ { From side-condition 7 (q is ci or pi) }
ϒi[x\(c|p)][b\y][vi\w][w\I (w)][c\I (c)] � �

⇒ { Substitution with freshness of c (so not in fv(ϒi)) }
ϒi[x\(I (c)|p)][b\y][vi\w][w\I (w)] � �

⇒ { From side-condition 8 (e is I (ci) or pi) }
ϒi[x\e][b\y][vi\w][w\I (w)] � �

⇒ { From side-condition 2 and 3 }
ϒi[x\e][bi\y][vi\w][w\I (w)] � �

⇒ { Substitution with freshness of w (so not in fv(ϒi)) }
ϒi[x\e][bi\y][vi\I (w)] � �

⇒ { ∃-introduction }
(∃bi . ϒi[x\e][vi\I (w)]) � �

⇒ { ∃-introduction }
(∃vi , bi . ϒi[x\e]) � �

⇒ { Premise }
X(x)[x\e] � �

⇒ { Substitution }
X(e) � �

Symbolic Execution Proofs for Higher Order Store Programs

E Proof Search Algorithm for Entailments Between Specifications

Currently we have four rules for the judgement B1 � B2, which are applied in the order we
present them. The first rule removes all the quantifiers on the RHS:

REMOVE∀RIGHT

∀y.B � B ′[y ′\z]
∀y.B � ∀y ′.B ′ z fresh

Soundness: The premise gives us ∀y.B ⇒ B ′[y ′\z] from which, using universal gen-
eralisation, we get ∀z.(∀y.B ⇒ B ′[y ′\z]). Using (41) we then derive ∀z.∀x.B ⇒
∀z.B ′[y ′\z]. But z don’t appear in B, so we have just ∀y.B ⇒ ∀z.B ′[y ′\z]. Finally we
rename the bound variables z to y′ giving ∀y.B ⇒ ∀y′.B ′ as required.

The second rule deals with disjunctions in the precondition of the triple on the right.

DISJPRE
n∧

i=1
∀y.B � {∃vi .Ai} · (t) {Q}

∀y.B � {∃v1.A1 ∨ . . . ∨ ∃vn.An} · (t) {Q}
Soundness: By iterated application of DISJUNCTION.

The third rule uses Skolemisation to deal with existential quantifiers in the precondition
of the specification on the right.

EXISTSPRE

∀y.B � {A[v\a]} · (t) {Q}
∀y.B � {∃v.A} · (t) {Q} a fresh

Soundness: By (SKOLEM).
The final rule uses the prover for �find-post to do most of the work (here A′ is just a spatial

conjunction but A, B can be any assertions):

TRIPLEENT

B �find-post {�} · (t)
{

m∨
i=1

∃vi .ϒi

}

m∧
i=1

ϒi[vi\ai] �Ii ∃bji
.(ϒ ′

ji
[wji

\bji
]) � �

pure
i

B � {�} · (t)
{

m′∨
i=1

∃wi .ϒ
′
i

}

1. j1, . . . , jm ∈ {1, . . . , m′},
2. a1, . . . , am all chosen fresh,

3. bj1 , . . . , bjm′ all chosen fresh
4. �1, . . . , �m pure

Soundness: We get from the first premise and the soundness of the proof system for
�find-post the following:

B ⇒ {�} · (t)
{

m∨
i=1

∃vi .ϒi

}

B. Reus et al.

We now need to check the well-formedness of the second premise, that is, we need to check
that for all i ∈ {1, . . . , m} we have fv(ϒi[vi\ai]) ∩ bji

= ∅. This is immediate from side
condition 3.

Now, we can use the consequence rule to obtain our desired conclusion if we can show

m∨
i=1

∃vi .ϒi ⇒
m′∨
i=1

∃wi .ϒ
′
i

This will follow if we can show that for all i ∈ {1, . . . , m},

∃vi .ϒi ⇒ ∃wji
.ϒ ′

ji

The above is equivalent to

∃vi .ϒi ⇒ ∃bji
.(ϒ ′

ji
[wji

\bji
])

because the variables bji
are chosen fresh. Using skolemisation, and the fact that variables

ai are chosen fresh, it will be enough to show

ϒi[vi\ai] ⇒ ∃bji
.(ϒ ′

ji
[wji

\bji
])

The following argument shows this:

ϒi[vi\ai]
⇒ {using the rule’s second premise}

∃bji
.(ϒ ′

ji
[wji

\bji
]) � �

pure
i

⇒ {by SPLITPURELEFT}
∃bji

.(ϒ ′
ji
[wji

\bji
])

F Proof Search Algorithm for �find-post

The first rule we have for �find-post instantiates quantifiers on the LHS so that the parameters
in the two specifications match.

INSTPARAM

(∀a . {P } · (t1, y, t2D) {Q}) [y\t] �find-post {�} · (t1, t, t2)
{
Q′}

∀a, y . {P } · (t1, y, t2) {Q} �find-post {�} · (t1, t, t2) {Q′} t1 ∩ (a ∪ {y}) = ∅

(The side condition here makes sure that we instantiate the leftmost quantified parameter, to
make things more deterministic.)
Soundness: Follows from soundness of universal instantiation, that is, ∀u, y.A ⇒
∀.u(A[y\e]) for any expression e.

Symbolic Execution Proofs for Higher Order Store Programs

The main rule for �find-post is the following one.

INFERSPECFORCALL

� �I ∃uk, a.ϒk � �

∀a.

{
n∨

i=1
∃ui .ϒi

}
· (p)

{
m∨

i=1
∃vi .ϒ

′
i

}
�find-post {�} · (t)

{
m∨

i=1
(∃vi .ϒ

′
i [a\I (a)] � �)

}

1. t ∩ a = ∅,
2. fv(�) ∩ uk, a = ∅,
3. for each i ∈ {1, . . . , m} we have vi ∩ a = ∅
4. for each i ∈ {1, . . . , m}, no formula in I (a) contains a variable from vi

5. k ∈ {1, . . . , n}
6. no formula in I (uk) contains a variable from a
7. uk ∩ a = ∅

backtracks

Note that after (INSTPARAM) has been used to make the parameters match, some bound
variables may need to be renamed to fresh variables to allow the (INFERSPECFORCALL)
rule to be used. We do not go into detail about these renamings.

Note also that, when called from (TRIPLEENT), this rule needs to backtrack in its
choice of k. If one choice of k fails, it is worth backtracking even if one had shown
� �I ∃uk, x.ϒk � �, because different choices of k might succeed with a different I ,
giving different instantiations of the universally quantified variables a and thus different
postconditions.
Soundness: For now we will assume that the following holds:

ϒk[uk, a\I (uk, a)] ⇒ (∃uk.ϒk) [a\I (a)] (40)

We will come back and prove this at the end.
First we need to show that the entailment problem in the first premise is “well-formed”,

which means showing fv(�) ∩ ui , a = ∅. But this is just side condition 2. Then, we get to
assume that:

(a) � ⇒ ϒi[ui , a\I (ui , a)] � �

(b) fv(�) ⊆ fv(�)

(c) dom(I) = ui , a

We’ll need to use the following axiom scheme (which one finds in Hilbert systems):

∀x.(A ⇒ B) ⇒ (∀x.A ⇒ ∀x.B) (41)

B. Reus et al.

We then reason as follows.

∀a.

{
n∨

i=1

∃ui .ϒi

}
· (t)

{
m∨

i=1

∃vi .ϒ
′
i

}

⇒ {consequence rule, universal generalisation and (41)}

∀a. {ϒk} · (t)
{

m∨
i=1

∃vi .ϒ
′
i

}

⇒ {instantiate a with I (a) and use side condition 1}

{(∃uk.ϒk) [a\I (a)]} · (t)
{(

m∨
i=1

∃vi .ϒi

)
[a\I (a)]

}

⇒ {use shallow frame axiom to add � as a frame}

{(∃uk.ϒk) [a\I (a)] � �} · (t)
{(

m∨
i=1

∃vi .ϒ
′
i

)
[a\I (a)] � �

}

⇒ {use consequence rule, (40) and monotonicity of �}

{ϒk[uk, a\I (uk, a)] � �} · (t)
{(

m∨
i=1

∃vi .ϒ
′
i

)
[a\I (a)] � �

}

⇒ {using consequence rule and (a) above}

{�} · (t)
{(

m∨
i=1

∃vi .ϒ
′
i

)
[a\I (a)] � �

}

⇒ {use side conditions 3 and 4}

{�} · (t)
{(

m∨
i=1

∃vi .ϒ
′
i [a\I (a)]

)
� �

}

⇒ {distribution of ∨ and �}

{�} · (t)
{

m∨
i=1

(∃vi .ϒi[a\I (a)] � �)

}

To finish, we need to prove (40). Clearly we have

ϒk[uk\I (uk)] ⇒ ∃uk.ϒk

Then by universal generalisation we have

∀a.(ϒk[uk\I (uk)] ⇒ ∃uk.ϒk)

and then instantiating a with I (a) gives us

ϒk[uk\I (uk)][a\I (a)] ⇒ (∃uk.ϒk)[a\I (a)]
Thus we will be done if we can show that

ϒk[uk\I (uk)][a\I (a)] ⇔ ϒk[uk, a\I (uk, a)]
and this follows from side conditions 6 and 7.

Symbolic Execution Proofs for Higher Order Store Programs

G Extended Rules for �find-tr

H Soundness of Rules for �find-tr

H.1 Soundness of FIND

FIND

P �SMT e′A = eA + o

 : P � eA �→ C0, . . . ,Co−1, B,Co+1, . . .Cn �ε
find-tr e′A �→ B

We know by soundness of �SMT that

P ⇒ e′A = eA + o (42)

and need to show that
 |= P � eA �→ C0, . . . ,Co−1, B,Co+1, . . .Cn ⇒ e′A �→ B � ϒ

for some appropriate ϒ .

P � eA �→ C0, . . . ,Co−1, B,Co+1, . . .Cn

⇒ { (�→-GROUP), (�-MONOTONICITY) }
P � eA �→ C0 � . . . � eA + n �→ Cn

⇒ { by (SPLITPURERIGHT), (�-MONOTONICITY), and (42) }
P � e′A = eA + o � eA �→ C0 � . . . � eA + n �→ Cn

⇒ { by equational reasoning, (SPLITPURELEFT), (�-MONOTONICITY) }

B. Reus et al.

P � eA �→ C0 � . . . � eA + o− 1 �→ Co−1 � e �→ B �

� eA + o+ 1 �→ Co+1 � . . . � eA + n �→ Cn

⇒ { (�-COMMUTATIVE) }
e′A �→ B � ϒ

where ϒ ≡ P � eA �→ C0 � . . . � eA + o − 1 �→ Co−1 � eA + o + 1 �→
Co+2 � . . . � eA + n �→ Cn.

H.2 Soundness of FINDUNFOLD

Note that the first hypothesis of the rule is just there to make the rule deterministic.
By the first assumption and soundness of �SMT we know that

purify(closure(�i[vi\wi][v\E] � P)) ⇔ false for all i �= k (43)

The following lemma can be simply derived from the laws for puriy and closure:

Lemma 11 If purify(closure(A)) ⇔ false then A ⇔ false.

From Lemma 11 and (43) it follows that �i[vi\wi][v\E] � P ⇔ false for all i �= k and
thus

∃vi . �i[v\E] � P ⇔ false for all i �= k (44)

By the soundness of the second assumption (using induction hypothesis) we know that

, X(v) ⇒ ∃v1.�1∨· · ·∨∃vn.�n |= �k[vk\wk][v\E] � P ⇔ ∃y. eA �→ B � Rpure � ϒ ′
(45)

for some ϒ ′ and need to show that

X(v) ⇔ ∃v1.�1 ∨ · · · ∨ ∃vn.�n |=
X(E) � P ⇔ ∃y, wk. eA �→ B(·) � purify(�k[vk\wk][v\E]) � Rpure � ϒ

for some appropriate ϒ . We reason as follows:

X(E) � P

⇒ {(PREDLEFT)}
(∃v1.�1 ∨ · · · ∨ ∃vn.�n)[v\E] � P

⇒ { by the � distribution rules ∨ and ∃ and (�-MONOTONICITY) }
(∃v1.�1[v\E] � P) ∨ · · · ∨ (∃vn.�n[v\E] � P)

⇒ { by (44)}
∃vk.�k[v\E] � P

Symbolic Execution Proofs for Higher Order Store Programs

It therefore remains to show

∃vk.�k[v\E] � P ⇒ ∃y, wk. eA �→ B � purify(�k[vk\wk][v\E]) � Rpure � ϒ (46)

for some ϒ . For the remainder, first note that the following logical rule (which is standard):

∀∃
∀x.A ⇒ B

(∃x.A) ⇒ (∃x. B)

To prove (46) by the (∀∃) rule it thus suffices to show (as wk are fresh):

�k[vk\wk][v\E] � P ⇒ ∃y. eA �→ B � purify(�k[vk\wk][v\E]) � Rpure � ϒ (47)

choosing ϒ to be ϒ ′ this follows from (45).

H.3 Soundness of FINDSPLIT

By the first assumption and soundness of �I we know that

P ⇒ (I (u1), . . . , I (uk)) ∈ êγ � � (48)

From (48) we get P ⇒ (I (u1), . . . , I (uk)) ∈ êγ � true and thus by (�-SPLITPURERIGHT)

P ⇒ P � (I (u1), . . . , I (uk)) ∈ êγ (49)

The second assumption by induction yields:

S[s, n, v\w] � P ⇒ ∃y. eA �→ B � Rpure � ϒ (50)

for some ϒ . First we reason as follows:

L(ê, ê′, êγ) � P

⇒ { (by (49), (�-MONOTONICITY),(�-COMMUTATIVITY) }
L(ê, ê′, êγ) � (I (u1), . . . , I (uk)) ∈ êγ � P

⇒ { by (SPLIT) and (�-MONOTONICITY) }
∃s, n, v, α, β.S � P

Using (∀∃) again it just remains to show (note that α and β are already fresh by assumption
and thus need not be substituted):

S[s, n, v\w] � P ⇒ ∃y. eA �→ B � purify(S[s, n, v\w]) � Rpure � ϒ (51)

B. Reus et al.

for some ϒ . By (PURIFY) and (�-MONOTONICITY) it suffices to show

S[s, n, v\w] � purify(S[s, n, v\w]) � P ⇒ ∃y. e �→ B � purify(S[s, n, v\w]) � Rpure � ϒ

(52)
for some ϒ and by (�-COMMUTATIVITY) and (�-MONOTONICITY) this holds if we can
prove that

S[s, n, v\w] � P ⇒ ∃y. eA �→ B � Rpure � ϒ (53)

for some ϒ which follows from (50).

I Detailed Steps of the Entailment Prover

Here we show how the unfolded strong specifications can be folded up into the weak vari-
ations, as performed in main and discussed in Section 6.5. The proof starts with symbolic
state obtained at the point just before the unfold ghost statement executes.

{
$ListLibraryStrong(lookupL, addPairL, disposeL, createL) � res �→ }

ghost unfold $ListLibraryStrong(?, ?, ?, ?);
UNFOLD⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

lookupL �→ . . . � disposeL �→ . . . � createL �→ . . .

� addPairL �→ ∀al, key, value, κ.{
$AssocListH(al; κ)

�$Rel(key, value)

}
·(al, key, value)

{
$AssocListH(al; {key} ∪ κ)

}

� res �→

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

ghost fold $ListLibraryWeak(?, ?, ?, ?);
FOLD (see Appendix I.1 below. Finds frame res �→){

$ListLibraryWeak(lookupL, addPairL, createL, disposeL) � res �→ }

I.1 Entailment Steps for the (GHOSTFOLD) Rule

For the fold, using the defintion of $ListLibraryWeak we are trying to prove

lookupL �→ . . . � disposeL �→ . . . � createL �→ . . .

� addPairL �→ ∀al, key, value, κ.{
$AssocListH(al; κ)

�$Rel(key, value)

}
·(al, key, value)

{
$AssocListH(al; {key} ∪ κ)

}

� res �→
�
∃a0, a1, a2, a3.

a0 �→ . . . � a1 �→ . . . � a2 �→ . . .

� a3 �→ ∀al, key, value.{ ∃κ. $AssocListH(al; κ)

� $Rel(key, value)

}
·(al, key, value)

{ ∃κ. $AssocListH(al; κ)
}

Symbolic Execution Proofs for Higher Order Store Programs

Applied (INSTMATCHADDR) [Instantiating a3 with addPairL]

lookupL �→ . . . � disposeL �→ . . . � createL �→ . . .

� addPairL �→ ∀al, key, value, κ.{
$AssocListH(al; κ)

�$Rel(key, value)

}
·(al, key, value)

{
$AssocListH(al; {key} ∪ κ)

}

� res �→
�
∃a0, a1, a2.

a0 �→ . . . � a1 �→ . . . � a2 �→ . . .

� addPairL �→ ∀al, key, value.{ ∃κ. $AssocListH(al; κ)

� $Rel(key, value)

}
·(al, key, value)

{ ∃κ. $AssocListH(al; κ)
}

Applied (CANCELPTTRIPLE) (see Appendix I.2 below).

lookupL �→ . . . � disposeL �→ . . . � createL �→ . . . � res �→
�
∃a0, a1, a2. a0 �→ . . . � a1 �→ . . . � a2 �→ . . .

Applied (INSTMATCHADDR) and (CANCELPTTRIPLE) in a similar way for instantia-
tions [a2 := createL, a1 := disposeL, a0 := lookupL]

res �→ � emp

Applying (PURE) to finish, we have found the frame res �→ .

I.2 Entailment Steps for the Application of (CANCELPTTRIPLE) with AddPairL

For this, we need to prove

∀al, key, value, κ.{
$AssocListH(al; κ)

�$Rel(key, value)

}
·(al, key, value)

{
$AssocListH(al; {key} ∪ κ)

}

�
∀al, key, value.{ ∃κ. $AssocListH(al; κ)

� $Rel(key, value)

}
·(al, key, value)

{ ∃κ. $AssocListH(al; κ)
}

Applied (REMOVE∀RIGHT)

∀al, key, value, κ.{
$AssocListH(al; κ)

�$Rel(key, value)

}
·(al, key, value)

{
$AssocListH(al; {key} ∪ κ)

}

� { ∃κ. $AssocListH(al0; κ)

� $Rel(key0, value0)

}
·(al0, key0, value0)

{ ∃κ.

$AssocListH(al0; κ)

}

B. Reus et al.

Applied (EXISTSPRE)

∀al, key, value, κ.{
$AssocListH(al; κ)

�$Rel(key, value)

}
·(al, key, value)

{
$AssocListH(al; {key} ∪ κ)

}

� {
$AssocListH(al0; κ0)

� $Rel(key0, value0)

}
·(al0, key0, value0)

{ ∃κ.

$AssocListH(al0; κ)

}

Applied (TRIPLEENT) (see the two separate parts below)

I.2.1 Trying to Relate Preconditions (First Premise).

Trying to prove

∀al, key, value, κ.{
$AssocListH(al; κ)

�$Rel(key, value)

}
·(al, key, value)

{
$AssocListH(al; {key} ∪ κ)

}

�find-post {
$AssocListH(al0; κ0)

� $Rel(key0, value0)

}
·(al0, key0, value0)

{
?
}

Applied (INSTPARAM)

∀κ.{
$AssocListH(al0; κ)

�$Rel(key0, value0)

}
·(al0, key0, value0)

{
$AssocListH(al0; {key0} ∪ κ)

}

�find-post {
$AssocListH(al0; κ0)

� $Rel(key0, value0)

}
·(al0, key0, value0)

{
?
}

Applied (INFERSPECFORCALL) (see steps below)

∀κ.{
$AssocListH(al0; κ)

�$Rel(key0, value0)

}
·(al0, key0, value0)

{
$AssocListH(al0; {key0} ∪ κ)

}

�find-post {
$AssocListH(al0; κ0)

� $Rel(key0, value0)

}
·(al0, key0, value0)

{
$AssocListH(al0; {key0} ∪ κ0)

}

This completes proof of first premise, and found postcondition:

$AssocListH(al0; {key0} ∪ κ0)

Showing premise for (INFERSPECFORCALL). Trying to prove

$AssocListH(al0; κ0)

� $Rel(key0, value0)
� ∃κ. $AssocListH(al0; κ)

� $Rel(key0, value0)

Applied (INSTMATCHARG) [κ := κ0], (CANCELPRED)

$Rel(key0, value0) � $Rel(key0, value0)

Applied (CANCELPRED)

emp � emp

Symbolic Execution Proofs for Higher Order Store Programs

(PURE) completes the entailment. There is no frame left over, so the generated postcondition
is simply the postcondition from the LHS, after substituting with the discovered instantiation
[κ := κ0]:

$AssocListH(al0; {key0} ∪ κ0)

I.2.2 Trying to Relate Postconditions (Second Premise)

Trying to prove

$AssocListH(al0; {key0} ∪ κ0) � ∃κ1.$AssocListH(al0; κ1)

Applied (INSTMATCHARG) [κ1 := {key0} ∪ κ0], (CANCELPRED)

emp � emp

(PURE) completes postconditions.

References

1. The Crowfoot website. www.sussex.ac.uk/informatics/crowfoot (2011)
2. Beckmann, O., Houghton, A., Mellor, M.R., Kelly, P.H.J.: Runtime code generation in C++ as a

foundation for domain-specific optimisation. In: Domain-Specific Program Generation, pp. 291–306
(2003)

3. Benton, N., Kennedy, A., Beringer, L., Hofmann, M.: Relational semantics for effect-based program
transformations: higher-order store. In: PPDP, pp. 301–312 (2009)

4. Berdine, J., Calcagno, C., O’Hearn, P.W.: Smallfoot: Modular automatic assertion checking with
separation logic. In: FMCO, pp. 115–137 (2005)

5. Berdine, J., Calcagno, C., O’Hearn, P.W.: Symbolic execution with separation logic. In: APLAS, pp. 52–
68 (2005)

6. Biering, B., Birkedal, L., Torp-Smith, N.: Bi-hyperdoctrines, higher-order separation logic, and abstrac-
tion. ACM Trans. Program. Lang. Syst. 29(5) (2007)

7. Birkedal, L., Reus, B., Schwinghammer, J., Støvring, K., Thamsborg, J., Yang, H.: Step-indexed Kripke
models over recursive worlds. In: POPL’11, pp. 119–132. IEEE (2011)

8. Birkedal, L., Torp-Smith, N., Yang, H.: Semantics of separation-logic typing and higher-order frame
rules for Algol-like languages. LMCS 2(5) (2006)

9. Blom, S., Huisman, M.: Witnessing the elimination of magic wands (2013)
10. Cai, H., Shao, Z., Vaynberg, A.: Certified self-modifying code. In: PLDI, pp. 66–77 (2007)
11. Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Compositional shape analysis by means of

bi-abduction. ACM SIGPLAN Notices 44(1), 289–300 (2009)
12. Charguéraud, A.: Characteristic formulae for the verification of imperative programs. In: Chakravarty,

M.M.T., Hu, Z., Danvy, O. (eds.): ICFP, pp. 418–430. ACM (2011)
13. Charlton, N., Horsfall, B., Reus, B.: Formal reasoning about runtime code update. In: Abiteboul, S.,

Böhm, K., Koch, C., Tan, K.-L. (eds.): ICDE Workshops, pp. 134–138. IEEE (2011)
14. Charlton, N., Horsfall, B., Reus, B.: Crowfoot: A verifier for higher-order store programs. In: Kuncak,

V., Rybalchenko, A. (eds.): VMCAI, volume 7148 of Lecture Notes in Computer Science, pp. 136–151.
Springer (2012)

15. Charlton, N., Reus, B.: A deeper understanding of the deep frame axiom. Extended abstract, presented
at LOLA (Syntax and Semantics of Low Level Languages) (2010)

16. Charlton, N., Reus, B.: Specification patterns and proofs for recursion through the store. In: FCT,
pp. 310–321 (2011)

17. Chin, W.-N., David, C., Nguyen, H.H., Qin, S.: Automated verification of shape, size and bag properties
via user-defined predicates in separation logic. Sci. Comput. Program. 77(9), 1006–1036 (2012)

18. Chlipala, A.: Mostly-automated verification of low-level programs in computational separation logic. In:
Hall, M.W., Padua, D.A. (eds.): PLDI, pp. 234–245. ACM (2011)

19. Chlipala, A., Malecha, J.G., Morrisett, G., Shinnar, A., Wisnesky, R.: Effective interactive proofs for
higher-order imperative programs. In: Hutton, G., Tolmach, A.P. (eds.): ICFP, pp. 79–90. ACM (2009)

www.sussex.ac.uk/informatics/crowfoot

B. Reus et al.

20. Distefano, D., O’Hearn, P.W., Yang, H.: A local shape analysis based on separation logic. In: TACAS,
pp. 287–302 (2006)

21. Distefano, D., Parkinson, M.J.: jStar: towards practical verification for Java. In: OOPSLA, pp. 213–226
(2008)

22. Gherghina, C., David, C., Qin, S., Chin, W.-N.: Structured specifications for better verification of heap-
manipulating programs. In: FM, pp. 386–401 (2011)

23. Gordon, M.J.C., Milner, R., Wadsworth, C.P.: Edinburgh LCF, volume 78 of Lecture Notes in Computer
Science. Springer (1979)

24. Henderson, B.: Linux loadable kernel module HOWTO (v1.09). Available online http://tldp.org/
HOWTO/Module-HOWTO/ (2006)

25. Hoare, C.A.R.: Procedures and parameters: An axiomatic approach. In: Engeler, E. (ed.): Symposium
on Semantics of Algorithmic Languages, volume 188 of Lecture Notes in Mathematics, pp. 102–116.
Springer Berlin, Heidelberg (1971)

26. Honda, K., Yoshida, N., Berger, M.: An observationally complete program logic for imperative higher-
order functions. In: LICS, pp. 270–279 (2005)

27. Horsfall, B.: Automated reasoning for reflective programs. PhD thesis (2014)
28. Horsfall, B., Charlton, N., Reus, B.: Verifying the reflective visitor pattern. In: FtFJP, pp. 27–34 (2012)
29. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.: VeriFast: A powerful,

sound, predictable, fast verifier for C and Java. In: NASA Formal Methods, pp. 41–55 (2011)
30. Jacobs, B., Smans, J., Piessens, F.: A quick tour of the VeriFast program verifier. In: APLAS, pp. 304–

311 (2010)
31. Lee, W., Park, S.: A proof system for separation logic with magic wand. In: Proceedings of the 41st

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL, pp. 477–490,
New York, USA, 2014. ACM

32. Nanevski, A. J., Morrisett, G., Birkedal, L.: Hoare type theory, polymorphism and separation. J. Funct.
Program. 18(5–6), 865–911 (2008)

33. Ni, Z., Shao, Z.: Certified assembly programming with embedded code pointers. In: POPL, pp. 320–333
(2006)

34. Pottier, F.: Hiding local state in direct style: a higher-order anti-frame rule. In LICS, pp. 331–340,
Pittsburgh, Pennsylvania (2008)

35. Pym, D.J., O’Hearn, P.W., Yang, H.: Possible worlds and resources: the semantics of BI. Theor. Comput.
Sci. 315(1), 257–305 (2004)

36. Reus, B., Schwinghammer, J.: Separation logic for higher-order store. In: CSL, pp. 575–590 (2006)
37. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In: LICS, pp. 55–74 (2002)
38. Rutten, J.J.M.M.: Elements of generalized ultrametric domain theory. Theor. Comput. Sci. 170(1–2),

349–381 (1996)
39. Schwerhoff, M., Summers, A.J.: Lightweight support for magic wands in an automatic verifier. Technical

report, ETH Zurich (2014)
40. Schwinghammer, J., Birkedal, L., Reus, B., Yang, H.: Nested Hoare triples and frame rules for higher-

order store. In: CSL, pp. 440–454 (2009)
41. Schwinghammer, J., Birkedal, L., Reus, B., Yang, H.: Nested Hoare triples and frame rule for higher-

order store. Logical Methods Comput. Sci. 7(3) (2011)
42. Schwinghammer, J., Yang, H., Birkedal, L., Pottier, F., Reus, B.: A semantic foundation for hidden state.

In: FOSSACS, pp. 2–17 (2010)
43. Stoyle, G., Hicks, M., Bierman, G., Sewell, P., Neamtiu, I.: Mutatis mutandis: Safe and predictable

dynamic software updating. ACM Trans. Program. Lang. Syst. 29(4) (2007)

http://tldp.org/HOWTO/Module-HOWTO/
http://tldp.org/HOWTO/Module-HOWTO/

	Symbolic Execution Proofs for Higher Order Store Programs
	Abstract
	Introduction
	Running Example.
	Structure of this Paper

	Programming Language and Assertion Language
	Programming Language Featuring Higher Order Store
	Assertion Language
	Annotated Programs
	Declarations
	Hints
	List Segments

	Deep Framing

	Specification of the Running Example
	The fib Implementation
	The Memoiser
	The Main Program
	The List Library

	A ``Core'' Hoare Logic for Higher-Order Store
	Rules for Generating Verification Conditions (VCs)
	Rules for Proving VCs
	Variable Naming Conventions
	Expression Naming Conventions
	Substitution Notation Convention
	Explanation of Fig. 6

	Soundness of the Logic Above
	Operational Semantics of Programming Language
	Semantics of Assertions Including Triples
	Interpretation of Invariant Extension
	Interpretation of Triples
	Interpretation of our Assertion Language
	The Environment for Predicate Definitions

	Semantics of Judgements
	Soundness of Assertion Logic
	Soundness of Hoare Rules
	Soundness of the SMT Solver

	Automation of Program Verification
	Overview
	Verification Condition Generation
	Invariant Extension Involving Recursive Predicates

	Symbolic Execution
	Simplification After each Symbolic Execution State
	Soundness of Cleanup Stages

	Entailment Proof Search Algorithms
	Entailments Between Assertion Disjuncts
	Entailments Between Specifications
	Inferring Postconditions for Invocations
	Finding Specifications Inside a Symbolic State

	An Example of Proving Entailments Between Specifications
	Advanced Hints
	Predicate Folding for Finding Triples and Lemma Application for Entailment
	Predicate Folding for Triple Entailment

	Related Work
	Stand-Alone Systems Following in the Footsteps of Smallfoot
	VeriFast

	Shallow Embeddings in Coq
	XCAP/GCAP
	Bedrock
	CFML
	Ynot

	Crowfoot Usability Report
	Future Work
	Acknowledgments
	Appendix A
	A Core Rules
	A.1 Rules for Hoare Triples
	A.1.1 Syntax Driven Rules for Triples
	A.1.2 Non-Syntax Driven Rules for Triples
	A.1.3 Rules that use Predicate or Procedure Declaration Context
	A.2 Rules for Entailments Between Assertions
	A.2.1 Separation Logic Axioms
	A.2.2 Distribution Laws for Deep Framing
	A.2.3 Rules that use Predicate Declaration Context
	A.2.4 Inductive Rules for Inductive Predicates
	A.2.5 Rules for Entailment Between Behavioural Specifications
	 Symbolic Execution Rules
	Appendix B Symbolic Execution Rules
	B.1 Atomic Statements
	B.2 Ghost Statements
	B.3 Extraordinary Rules
	 Soundness of Symbolic Execution Rules
	Appendix C Soundness of Symbolic Execution Rules
	C.1 Soundness of Lookup
	C.2 Soundness of Eval-Rules
	C.3 Soundness of Guided Eval
	C.4 Soundness of StoreCode
	C.5 Soundness of StoreCodeGuided
	 Proofs of Soundness of Rules for Entailments Between Disjuncts
	Appendix D Proofs of Soundness of Rules for Entailments Between Disjuncts
	 Proof Search Algorithm for Entailments Between Specifications
	Appendix E Proof Search Algorithm for Entailments Between Specifications
	 Proof Search Algorithm for find-post
	Appendix F Proof Search Algorithm for find-post
	 Extended Rules for find-tr
	Appendix G Extended Rules for find-tr
	 Soundness of Rules for find-tr
	Appendix H Soundness of Rules for find-tr
	H.1 Soundness of Find
	H.2 Soundness of FindUnfold
	H.3 Soundness of FindSplit
	 Detailed Steps of the Entailment Prover
	Appendix I Detailed Steps of the Entailment Prover
	I.1 Entailment Steps for the (GhostFold) Rule
	I.2 Entailment Steps for the Application of (CancelPtTriple) with AddPairL
	I.2.1 Trying to Relate Preconditions (First Premise).
	I.2.2 Trying to Relate Postconditions (Second Premise)
	References

